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Approach, Goals and Expectations

We develop a formal and automated combination of
Structure-generating ATP
Condensed detachment (CD)
ITP withMetamath
Grammar-based tree compression

These are unified by the notion of proof term
Scaling up ATP; tightly integrating ATP and ITP (and its mathematical KBs)
Proofs of lemmas =̂ productions of grammars that compress proof terms
Mapping between abstraction levels =̂ lossless compression of proof terms (same language)
Basis for
• Dataset-oriented methods: statistical, complex networks, machine learning• Investigating and analyzing how proofs are/can be structured

• by humans / by machine – for humans and for machine processing
• Learning to guide proof search in ATP from ITP proofs
A framework that is powerful yet sparse, reduced to essentials – useful for research
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Structure-Generating ATP | CD | ITP withMetamath | Grammar-based Tree Compression

Enumeration of proof structures (Prawitz, connection method, clausal tableaux, PTTP)
• In contrast to generating consequence formulas (resolution, saturation-based techniques)• Enumeration is restricted by unification of formulas associated with nodes

. . . ¬p(f(x))

p(f(a)) . . . {x ↦ a}

. . . ¬p(f(x))

p(g(a)) . . .

\ /
↯

“Conventionally” only tree structures are considered, with “global” (rigid) formula variables – but
• DAGs where sub-proofs are re-used with “local” formula variables give much shorter proofs

• Like 104 vs. 1023• Connection structure calculus [Eder, 1989]• SGCD: proves LCL073-1, short proof of LCL038-1 [W, 2023,2024]• CCS: related to combinators [W, 2022]
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Structure-Generating ATP | CD | ITP withMetamath | Grammar-Based Tree Compression

Łukasiewicz, Tarski since the 1920s: first-order axiomatizations of propositional logics
• Formal proofs with the method of substitution and detachment
Carew A. Meredith in the mid 1950s refined this with condensed detachment
• Implicit most general unifiers instead ofexplicit substitutions• Proof terms, with a DAG representation
D(A,B) proves the conclusion yif A proves the major premise (x ⇒ y)and B proves the minor premise x

Formulas-as-types[Hindley, D. Meredith: Principal Type-Schemes and Condensed Detachment, 1990]
CD problems were used a lot in ATP in the 1990s, around OTTER[Ulrich: A Legacy Recalled and a Tradition Continued, 2001]
Renewed interest: fresh views on structure-generating ATP[W, Bibel: Investigations into Proof Structures, 2021,2024]
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Structure-Generating ATP | CD | ITP withMetamath | Grammar-Based Tree Compression

By Norman Megill, started early 1990s; contributors include David A. Wheeler, Mario Carneiro
Metamath Proof Explorer aka set.mm: the largestMetamath DB; available as a single text file
“Formalizing 100 Theorems”: Isabelle 92; HOL Light 89; Coq 79; Lean 79;Metamath 74; Mizar 69
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Structure-Generating ATP | CD | ITP withMetamath | Grammar-Based Tree Compression

“Metavariable mathematics” – use of metavariables over an object logic
Simplest framework that allows essentially all of mathematics to be expressed with absolute rigor
• All statements treated as mere sequences of symbols, constant and variable tokens

( ph -> ( ps -> ph ) )
• Metamath just knows how to substitute strings of symbols for the variables, based oninstructions you provide it in a proof, subject to constraints you specify for the variables• Based on CD: [Megill: A Finitely Axiomatized Formalization of Predicate Calculus w. Equality, 1995]
No particular set of axioms, axioms are defined in a DB
Almost no hard-wired syntax; syntax also defined via substitution rules in the DB
• Parsing is done within proofs, based on declarations in the DB• It is easy to strip off the “syntactic” parts from proofs; tools by default do not show them
Specification and introduction: Metamath book (free PDF)[Megill, Wheeler: Metamath – A Computer Language for Mathematical Proofs, 2nd. ed, 2019]
No single canonical tool: many verifiers and proof assistants, with metamath.exe as a reference
• metamath.exe verifies set.mm in 7.5 s, an optimized system in 0.2 s
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Structure-Generating ATP | CD | ITP withMetamath | Grammar-Based Tree Compression
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DAG: sharing repeated subtrees

t t

start → a(b(t), t)
t → c(d)

Grammar: sharing repeated tree patterns(connected subgraphs of the tree)

p
p

start → a(p(b(c)), p(d(e)))
p(V ) → f(g(V ))
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Proof Terms and MGTs

Structure-generating ATP | CD | ITP withMetamath | Grammar-based tree compression
We distinguish two vocabularies: for formulas and for proof terms
• We call variables in proof terms parameters and write them V1, V2, . . .

mptnan(V1, D(xornan, V2))
A proof term proves its most general theorem (MGT)

mptnan(V1, D(xornan, V2)) ∶ IsTheorem(n(x)) ← IsTheorem(y) ∧ IsTheorem(wxo(y, x))
• The MGT is a definite clause with a body atom for each parameter in the proof term• For brevity, we drop the single unary predicate IsTheorem (inMetamath it its written ⊢):

mptnan(V1, D(xornan, V2)) ∶ n(x) ← y ∧ wxo(y, x)
• The MGT is based on presuppositions (axioms, earlier proven lemmas)

mptnan ∶∶ n(y) ← x ∧ n(wa(x, y))
xornan ∶∶ (wxo(x, y) ⇒ n(wa(x, y)))
D ∶∶ y ← (x ⇒ y) ∧ x

• Depending on the presuppositions, the MGT of a proof term may be undefined 11



The CDDC Inference System to Specify the “Proves” Relation

12

Presupposition Application

APP
p ∶∶ A ← B1 ∧ . . . ∧Bn d1 ∶ B

′
1 ← R1 . . . dn ∶ B

′
n ← Rn

p(d1, . . . , dn) ∶ (A ← U )σ
where• the first premise is in the presupposition base B• σ = mgu({{B1, B

′
1}, . . . , {Bn, B

′
n}, {U ,R1, . . . ,Rn}})• premises have disjoint sets of variables achieved by renaming• variables U do not occur in the premises

Parameter Recording

PAR
Vi ∶ ui ← U

Instantiation

INS
d ∶ A ← R

d ∶ (A ← R)σ
σ subject toMetamath-specific constraints

Legend
p ∶∶ F – presupposition-statement
d ∶ F – proves-statementFor each parameter Vi ∈ {V1 . . . Vk} there is a dedicatedassociated formula variable ui. U def

= u1 ∧ . . . ∧ uk



The Most General Theorem (MGT) of a Proof Term

APP
p ∶∶ A ← B1 ∧ . . . ∧Bn d1 ∶ B

′
1 ← R1 . . . dn ∶ B′

n ← Rn

p(d1, . . . , dn) ∶ (A ← U )σ,
where σ = mgu({{B1, B

′
1}, . . . , {Bn, B

′
n}, {U ,R1, . . . ,Rn}})

PAR
Vi ∶ ui ← U

INS
d ∶ A ← R

d ∶ (A ← R)σ

Definition. If, for presupposition base B, there is an {APP,PAR}-deduction of a proves-statement
d[V1, . . . , Vk] ∶ A ← B1 ∧ . . . ∧Bk,

we say that mgtB(d[V1, . . . , Vk]) is defined and
mgtB(d[V1, . . . , Vk]) = A ← B1 ∧ . . . ∧Bk

Example.

D ∶∶ y ← (x ⇒ y) ∧ x

ax-1 ∶∶ (x ⇒ (y ⇒ x))
APP

ax-1 ∶ (x′ ⇒ (y′ ⇒ x
′))

ax-1 ∶∶ (x ⇒ (y ⇒ x))
APP

ax-1 ∶ (x′′ ⇒ (y′′ ⇒ x
′′))

APP
D(ax-1, ax-1) ∶ (y′ ⇒ (x′′ ⇒ (y′′ ⇒ x

′′)))

13



Handling Parameters in Proof Terms

APP
p ∶∶ A ← B1 ∧ . . . ∧Bn d1 ∶ B

′
1 ← R1 . . . dn ∶ B′

n ← Rn

p(d1, . . . , dn) ∶ (A ← U )σ,
where σ = mgu({{B1, B

′
1}, . . . , {Bn, B

′
n}, {U ,R1, . . . ,Rn}})

PAR
Vi ∶ ui ← U

INS
d ∶ A ← R

d ∶ (A ← R)σ

Rule PAR, parameter recording, effects that for all occurrences of Vi in the proof term the head of theclause that is “proven” by the Vi is identified with the corresponding variable ui in U

(Recall that U = u1 ∧ . . . ∧ uk where V1, . . . , Vk are the parameters under consideration)
Example.

D ∶∶ y ← (x ⇒ y) ∧ x
PAR

V1 ∶ u
′
1 ← u

′
1

ax-1 ∶∶ (x1 ⇒ (x2 ⇒ x1))
APP

ax-1 ∶ (x1 ⇒ (x2 ⇒ x1)) ← u
′′
1

APP
D(V1, ax-1) ∶ y ← ((x1 ⇒ (x2 ⇒ x1)) ⇒ y)

mgu({{(x ⇒ y), u′1}, {x, (x1 ⇒ (x2 ⇒ x1))}}, {u1, u
′
1, u

′′
1})= {u1 ↦ ((x1 ⇒ (x2 ⇒ x1)) ⇒ y), . . .}
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A Subtlety with Nonlinear Proof Terms

A proof term is nonlinear if it has multiple occurrences of the same parameter
• 30% on the proofs in set.mm are nonlinear
A body atom of the MGT is constrained simultaneously w.r.t. each occurrence of thecorresponding parameter Vi in the proof term
• Leads for nonlinear proof terms to difference between MGT determined(1) from proof term with parameters and MGTs of substituting proof terms(2) from proof term after substituting• (1) may even be undefined for defined (2)

Proposition. Assume
mgtB(d[V1, . . . , Vk]) = A ← B1 ∧ . . . ∧Bk

mgtB(d1) = B
′
1, . . . ,mgtB(dk) = B

′
k , where d1, . . . , dk are ground

σ = mgu({{B1, B
′
1}, . . . , {Bk, B

′
k}}) is definedThen

If d is linear, then mgtB(d[d1, . . . , dk]) = AσIn the general case, also for nonlinear d Aσ ≥⋅ mgtB(d[d1, . . . , dk])
15



Metamath Proofs as Grammar-Based Tree Compressions

The Two Primitives ofMetamath (set.mm) Proofs[Megill: A Finitely Axiomatized Formalization of Predicate Calculus with Equality, 1995]
Condensed detachment D ∶∶ y ← (x ⇒ y) ∧ x In set.mm: ax-mp, switched parameters
Condensed generalization G ∶∶ ∀(y, x) ← x In set.mm: ax-gen

AMetamath Proof as a Tree Grammar
Describes a (typically large) proof term built from D, G and axiom namesOne production per nonterminal; no cyclic dependencies between nonterminals
Nonterminals are theorem names in lemma role

Example. mptxor(V1, V2) → mptnan(V1, D(xornan, V2))
mptnan(V1, V2) → D(imnani(V2), V1)
xornan → simprbi(xor2)
imnani(V1) → mpbir(V1, imnan)

⋮
mp2(V1, V2, V3) → D(D(V3, V1), V2)
a2i(V1) → D(ax-2, V1)
a1i(V1) → D(ax-1, V1) 16



Determining the MGT Directly on the Grammar-Compressed Form – The Grammar-MGT

We consider productions ordered “bottom-up” and successively enrich the presupposition base

Definition.
grammar-mgtB,G(pi(Vi)) def

= mgtB′ (di[Vi]]), where
B′

= B ∪⋃i−1
j=1{pj ∶∶ grammar-mgtB,G(pj(Vj))}.

In case an involved MGT is undefined, we say the grammar-MGT for each nonterminal is undefined
The subtlety concerning nonlinear proof terms and the MGT transfers to the grammar-MGT
• Let valG(pi(Vi)) denote the expansion of nonterminal pi(Vi) w.r.t. grammar G

Proposition. Assume grammar-mgtB,G(pi(Vi)) is defined. Then mgtB(valG(pi(Vi))) is defined, and
If G is linear, then grammar-mgtB,G(pi(Vi)) = mgtB(valG(pi(Vi)))
In the general case, also for nonlinearG grammar-mgtB,G(pi(Vi)) ≥⋅ mgtB(valG(pi(Vi)))
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Taking User-Specified Instantiation into Account

InMetamath theorem statements may be user-specified strict instances of the proven MGT
We model this by associating with each production an explicitly given definite clause Fi such that

Fi ≥⋅ shallow-mgtK (pi(Vi)),
where the shallow-MGT of pi(Vi) is defined as

shallow-mgtK (pi(Vi)) def
= mgtB′ (di[Vi]), where B′

= B ∪⋃i−1
j=1{pj ∶∶ Fj}

mptxor(V1, V2) → mptnan(V1, D(xornan, V2)) Fn

mptnan(V1, V2) → D(imnani(V2), V1) Fn−1

xornan → simprbi(xor2) Fn−2

imnani(V1) → mpbir(V1, imnan) Fn−3

⋮
mp2(V1, V2, V3) → D(D(V3, V1), V2) F3

a2i(V1) → D(ax-2, V1) F2

a1i(V1) → D(ax-1, V1) F1

The MGT variations are related by
Fi ≥⋅ shallow-mgtK (pi(Vi)) ≥⋅ grammar-mgtB,G(pi(Vi)) ≥⋅ mgtB(valG(pi(Vi)))

18
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The CD Tools Environment

For experimenting with condensed detachment . . .
Written in SWI-Prolog
Extends the PIE (Proving, Interpolating, Eliminating) environment [W, 2016; 2020]
• Provides interfaces to TPTP and many first-order provers
Includes structure-generating provers for CD and Horn problems: SGCD, CCS[W 2022; Rawson, W, Zombori, Bibel 2023; W 2024; W, Bibel 2024]
New: Metamath interface, written from scratch in SWI-Prolog
• Also proofs are translated to Prolog terms, with various options

• Raw form preservesMetamath’s compression through factorized terms• With and withoutMetamath’s “syntactic” steps• Compatible with other proof terms in CD Tools
• Prolog fact base generated from set.mm in 2 min; after compilation it loads in 0.5 s
New: methods and support for grammar-based tree compression

20
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The SETCORE KB: The First 60% of set.mm for Experimenting

Topic 1st Thm

Propositional calculus 1Predicate calculus 1,744Zermelo-Fraenkel set theory 2,650The axiom of replacement 5,086The axiom of choice 9,916Tarski-Grothendieck set theory 10,157Real and complex numbers 10,304Elementary number theory 15,391Basic structures 16,243Basic category theory 16,695Basic order theory 17,238Basic algebraic structures 17,517Basic linear algebra 19,918Basic topology 20,936Basic real and complex analysis 23,316Basic real and complex functions 23,897Elementary geometry 25,398Graph theory 25,912
Last Thm 27,235

Topic 1st Thm

Guides, miscellanea, examples 27,236
Deprecated material 27,321
70 mathboxes 29,111
Last Thm 43,920

21



Structural Properties of the KB SETCORE (I)

refG(p) ∣p∣ ∣valG(p)∣
∣G∣ N(G) med avg max 0 1 min med avg max med max

1,824,835 27,233 3 53 63,198 16% 20% 0 12 67 21,651 3×1054 5×101880

∣G∣: Size of G (sum of number of edges of the RHSs)
N(G): Number of productions of G
refG(p): Number of occurrences of the nonterminal p in RHSsi.e., occurrences of p as direct premise in another theorem’s proof
∣p∣: Size of the production for p
∣valG(p)∣: Size of the value (expansion) of the LHS for p
• These values are gigantic
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Structural Properties of the KB SETCORE (II)

savG(p)
min med avg max <0 0

-366 33 796 3,981,585 12% 10%

savG(p), the save-value of p
savG(p) def

= ∣G′∣ − ∣G∣,
where G′ is G after eliminating p (unfolding p in all RHSs and removing p′s production)
Indicates contribution of the production to grammar size reduction
It is 0 if the size remains unchanged and negative if the size is increased
For a linear production it is refG(p) × (∣P ∣ − arity(p)) − ∣P ∣ [Lohrey et al., 2013]
Subcolumns relate here to the multiset of the values for just those p with ref(p) > 0

22% have a save-value ≤ 0. Apparently they serve to break apart a larger proof.
Do these have further features that may guide automated breaking apart?
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Structural Properties of the KB SETCORE (III)

arity(p) voccs(v) vmultG(v)
avg max 0 nlG min med avg max min med max

2 28 45% 28% 0 1 7 2,445 0 16,640 7×101795

arity(p): Arity of p
• Maximum is 28, but average just 2, where 45% have arity 0 as in DAG compression
nlG: Percentage of productions that are nonlinear
voccs(v): Number of occurrences of variable v in the RHS
• Although median is 1, some have ≥ 2,000 occurrences. Do these productions play special roles?• Minimum 0 indicates LHS-only variables. What is their purpose?
vmult(v) : Number of occurrences of variable v in valG(p) for the production p that has v in its LHS
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Formula Properties of the KB SETCORE

∣F ∣ height(F )
min med avg max min med avg max >⋅ mgt =⋅ ≥⋅

0 10 14 193 0 4 4 20 8.38% 3.08% 3.91%
∣F ∣: Size of the clause (sum of tree size of atom arguments)
height(F ): Height of the clause (maximal height of its atoms)
• ∣F ∣ and height(F ) have large differences between maximum and average
>⋅ mgt: Percentage of theorem clauses that are a strict instance of the corresponding shallow-MGT
• The portion is significant
=⋅ : Percentage of theorem clauses that would be removed if duplicates were deleted such that onlya single copy is retained (modulo renaming of variables and clause body permutations)
≥⋅ : Like =⋅ but w.r.t. subsumption
• This redundancy might have reasons: different theorem names in different application contexts;

shorter or otherwise preferable proof of a strictly subsumed theorem
25
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Machine Compression: TreeRePair [Lohrey et. al 2013] – Re-Pair for Trees

Background: Re-Pair algorithm for grammar-based string compression [Larsson, Moffat, 2000]
• Recursively replace a most frequent digram (pair fg of consecutive symbols)with a fresh nonterminal h, defined with production h → fg

TreeRePair adapts it to trees [Lohrey, Maneth, Mennicke: XML Tree Struct. Compr. using RePair, 2013]
• A digram is now a pattern characterized by a parent symbol f with arity n ≥ 1, child symbol gwith aritym ≥ 0 and index i. The defining production with fresh nonterminal h is

h(V1, . . . , Vn−1+m) → f (V1, . . . , Vi−1, g(Vi, . . . , Vi+m), Vi+m+1, . . . , Vn−1+m)

Example. Illustration Digram Occurrences

f(g(e, e), f(g(e, e), e)) f(g(V1, V2), V3) 2
f(g(e, e), f(g(e, e), e)) g(e, V1) 2
f(g(e, e), f(g(e, e), e)) g(V1, e) 2
f(g(e, e), f(g(e, e), e)) f(V1, f(V2, V3)) 1
f(g(e, e), f(g(e, e), e)) f(V1, e) 1

27



TreeRePair [Lohrey et al. 2013] – Two Phases

1. Replacement phase

Loop, maintains a main term initialized with input termThe (initially possibly large) main term may internally be represented as DAG
• Identify digrams with multiple occurrences• Select one or more digrams according to heuristic criteria (e.g., arity, no. of occurrences)

f(g(e, e), f(g(e, e), e))• Generate productions with fresh nonterminals for the selected digrams
h(V1, V2, V3) → f(g(V1, V2), V3)• In themain term, fold into these productions (rewrite with them from RHS to LHS) – configurable
f(g(e, e), f(g(e, e), e)) ⟹ f(g(e, e), h(e, e, e)) ⟹ h(e, e, h(e, e, e))

Output: Proof grammar with the fresh productions and a production (Start → FinalMainTerm)

2. Pruning phase
Productions whose save-value is ≤0 are eliminated by unfolding them in all RHSs – configurable

28



Our Proof Compression Workflow

Processing stage Kind Source ∣G∣ N(G)
Initial set of trees 5×1022 17Initial set of trees as DAG 21,472 9271. TreeRePair replacement phase Structural [Lohrey et al., 2013] 9,739 4,1532. TreeRePair pruning phase Structural [Lohrey et al., 2013] 3,683 9053. Nonlinear compression Structural 3,204 6044. Same-value reduction Structural 3,174 5935. MGT-based reduction Formula-related 3,017 534

Nonlinear compression: introduce nonlinear productions for RHS occurrences with repeatedarguments
Same-value reduction: eliminate multiple nonterminals with same expansion
MGT-based reduction: eliminate productions for which the grammar-MGT is subsumed by that ofanother production
Subtleties
• Configuration such that productions of specified top-level theorems are preserved• Consideration of parameters modulo permutation
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The KBs MINISET and MINITRP

Processing stage Kind Source ∣G∣ N(G)
Initial set of trees 5×1022 17Initial set of trees as DAG 21,472 9271. TreeRePair replacement phase Structural [Lohrey et al., 2013] 9,739 4,1532. TreeRePair pruning phase Structural [Lohrey et al., 2013] 3,683 9053. Nonlinear compression Structural 3,204 6044. Same-value reduction Structural 3,174 5935. MGT-based reduction Formula-related 3,017 534

A Small Manageable Extract from set.mm
Theorem Sampler highlights 44 theorems from set.mmWe chose those 17 where expansion and our grammar-compression workflow succeeded in 60 s

The MINISET KB – Human-Expert Proof Structuring
Productions for the proofs the 17 theorems, supplemented by productions from set.mm for alltheorems that are directly or indirectly referenced by these

The MINITRP KB – Machine Proof Structuring
Result of our compression workflow for the set of the expanded proofs of the 17 theorems

30

https://us.metamath.org/mpeuni/mmset.html#theorems


Structural Properties of MINITRP vs. MINISET (I)

refG(p) ∣p∣ ∣valG(p)∣
∣G∣ N(G) med avg max 1 min med avg max med max

MINISET 2,302 690 2 3 68 45% 0 3 3 68 46,647 5.06×1022
MINITRP 3,017 534 3 5 85 0% 1 3 6 288 11,034 1.29×1020
MINIDAG 21,472 927 2 7 966 0% 0 8 23 1,694 17,171,018 5.06×1022

∣G∣ is for MINITRP 30% larger than for MINISET. What mechanical techniques are missing for a
comparable compression rate?
We also include MINIDAG, the minimal DAG compression of set of the 17 expanded proofs
• DAG compression already brings the gigantic tree sizes down to feasibility for machines.

Pattern-based grammar compression reduces the size further by a factor of about 7–10
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Structural Properties of MINITRP vs. MINISET (II)

∣savG(p)∣ arity(p)
min med avg max <0 0 avg max 0 nlG

MINISET -5 0 3 358 31% 29% 1 5 40% 2.17%
MINITRP 0 4 25 7,063 0% 0% 1 7 48% 2.43%
MINIDAG 1 18 71 16,140 0% 0% 0 0 100% 0.00%

Save-values are noticeable larger in MINITRP than in MINISET
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Formula Properties of MINITRP vs. MINISET

∣F ∣ height(F )
N(G) min med avg max min med avg max SET MS

MINISET 690 0 5 6 48 0 3 3 13
MINITRP 534 0 6 7 74 0 3 3 11 34% 29%
MINIDAG 927 0 7 10 53 0 4 5 13 21% 18%

SET: 34% of the formulas in MINITRP are also in set.mm
MS: 29% of the formulas in MINITRP are also in MINISET

• (not counting the 17 top-level theorems and modulo body permutations)• These are automated rediscoveries of lemma formulas from human structuring• The 5% difference between both values represents formulas of MINITRP that are in set.mm and
potentially useful for proving the 17 top-level theorems, but were not used to prove them in the
human structuring
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The Dependency Network of Proof Grammars are Scale-Free

Definition. PDNet(G), the proof dependency network of G, is a directed graph:
node = nonterminal
edge p → q: occurrence of q in the RHS for p (“q occurs as a direct premise of p”)
Then refG(p) is the in-degree of node p in PDNet(G)Many real-world networks are scale-free, i.e., exhibit power law degree distributions(roughly: “a large fraction of wealth falling into a small fraction of the nodes”);often a power law holds only for the tail of the distribution [Newman: Networks, 2018]
SETCORE, MINISET and MINITRP have power-law in-degree distributions!
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Lemma Synthesis by Compressing Human Structurings Further

A way to combine given human structuring with machine compression
Compressing a given grammar: take set of RHSs; add root; apply tree compression workflow

KB ∣G∣
MINISET 2.302
MINISET compressed further 1,831
MINITRP 3,017

Scales up: experiments on subsets of SETCORE for mathematical topics
• Given grammar vs. union of further compressions: 7% reduction• Reduction per topic: from 4% (Basic Algebraic Structures) to 30% (Tarski-Grothendieck Set Theory)
Yields some often used and thus apparently useful new lemmasFor example, for Axiom of Choice
lemma905(A) -> ad2antrr(syl(A, necon2ai(mtbii(sdom0, breq2)))).
$e |- ( A -> B ~< C ) $.
$p |- ( ( ( A /\ D ) /\ E ) -> (/) =/= C ) $.
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Lemma Synthesis by Compressing Human Structurings Further: Reduction per Topic

G
TRP
T is the result of compressing grammar GT for topic T further

Topic T N(GT ) N(GTRP
T ) ∣GT ∣ ∣GTRP

T ∣ Size reduction
Propositional calculus 1,743 1,843 5,760 5,191 10%Predicate calculus 904 1,050 4,357 3,942 10%Zermelo-Fraenkel set theory 2,436 2,964 16,343 14,887 9%Axiom of replacement 4,831 5,753 121,521 115,476 5%Axiom of choice 240 785 21,693 16,551 24%Tarski-Grothendieck set theory 147 356 4,986 3,469 30%Real and complex numbers 5,087 5,986 174,933 163,507 7%Elementary number theory 852 1,716 96,692 88,497 8%Basic structures 452 804 10,456 8,925 15%Basic category theory 543 1230 57,242 51,440 10%Basic order theory 280 516 7,278 6,112 16%Basic algebraic structures 2,401 3,318 169,352 163,547 4%Basic linear algebra 1,018 1,843 88,757 79,573 10%Basic topology 2,380 3,296 171,054 162,217 5%Basic real and complex analysis 581 1,451 193,877 182,005 6%Basic real and complex functions 1,501 2,378 499,438 459,803 8%Elementary geometry [514] – [139,192] – –Graph theory 1,324 2,193 41,904 37,701 10%
Total 26,720 37,482 1,685,643 1,562,843 7%
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Hammering: Proof and Formula Translation

Hammer systems [Blanchette, Kaliszyk, Paulson, Urban: Hammering towards QED, 2016]
1. Premise selector2. Translation module that constructs an ATP problem3. Proof reconstruction module that converts the ATP proof for the ITP system

Metamath Hammer: [Carneiro, Brown, Urban: Automated Theorem Proving for Metamath, 2023]
• Different formula translations viaMetamath Zero, into higher-order logic• From there to definite first-order clauses• Prover9 yields proofs of first-order Horn problems suitable for proof reconstruction,which involves expanding the resolution proof DAG into a tree
CD Tools Metamath interface
• Formula parsing with Prolog DCG grammars generated on the fly from relevant declarations;

same result as first-order translation ofMetamath Hammer• Syntax declarations can be used to pretty-print formulas inMetamath notation• Proof terms are by default without the ”syntactic parts”• To export proofs forMetamath, a procedure that infers a suitable ”syntactic part”, on the basisof declarations, subject toMetamath’s inheritance mechanism of disjoint variable restrictions 38



Premise Selection – Levels of Granularity

Kaliszyk, Urban: Learning-Assisted Theorem Proving with Millions of Lemmas, 2015
• Relevant lemmas not only named theorems, but also among lemmas used implicitly in proofs• Can be taken into account at different levels

1 “Atomic” kernel inferences, leading to big data2 Combinations of “tactics”
Here: grammar-compressed proof structures
• A single representation mechanism that integrates both levels

1 Fully expanded proof trees of gigantic size2 Lossless grammar compressions– Can be verified in fractions of a second– Provide with each production a distinguished lemma
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Structuring Proofs from Automated Systems – Identifying Important Steps

Here: grammar-based tree compression of proof structures
• Proof of lemma =̂ production; lemma formula =̂MGT• Structural properties such as refG(p) and savG(p)

Schulz: Analyse und Transformation von Gleichheitsbeweisen, 1993
• Proof represented by graph: our PDNet but edges flipped (“p occurs as a direct premise of q”)• Procedure awards status “lemma” to nodes with estimated high importance• Of 7 investigated criteria the 3 most powerful are structure-based

• Frequently used steps = refG(p)• Important intermediate results = savG(p) for DAGs• Isolated proof segments: important for given proof if used often within it but rarely from outside
Grammar-based tree compression – of formulas involved in proofs
• [Vyskocil, Stanovský, Urban: Automated Proof Compression by Invention of New Definitions, 2010]

• Lemmas often uninteresting for mathematicians; definitions costly to learn for humans
• [Hetzl: Applying Tree Languages in Proof Theory, 2012]
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Outlook: Grammar Compressions as DAG-Factorized Combinator Terms

Proof Term
3syl(V1, V2, V3) → D(D(ax-2, D(ax-1, V3)), D(D(ax-2, D(ax-1, V2)), V1))

Grammar Compression with Lemmas from set.mm
a1i(V1) → D(ax-1, V1)
a2i(V1) → D(ax-2, V1)
mpd(V1, V2) → D(a2i(V2), V1)
syl(V1, V2) → mpd(V1, a1i(V2))
3syl(V1, V2, V3) → syl(syl(V1, V2), V3)

DAG-FactorizedCombinator Term in D-Syntax
f1 = D(C, ax-2)
f2 = D(D(D(C4,B), f1), ax-1)
3syl = D(D(B, D(B, f2)), f2)

DAG-Factorized Combinator Term
f1 = Ca2
f2 = C4Bf1a1
3syl = B(Bf2)f2

Combinator Term
B(B(C4B(Ca2)a1))(C4B(Ca2)a1)

41

Some Combinators
λ-Term Principal Type

B λxyz . x(yz) (p ⇒ q) ⇒ ((r ⇒ p) ⇒ (r ⇒ q))
C λxyz . xzy (p ⇒ (q ⇒ r)) ⇒ (q ⇒ (p ⇒ r))
C4 λxyzu.x(yu)z (p ⇒ (q ⇒ r)) ⇒ ((s ⇒ p) ⇒ (q ⇒ (s ⇒ r)))
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Summing Up

Structure-generating ATP | CD | ITP withMetamath | Grammar-based tree compression
Theoretical Framework
MGT: unique most general formula proven by a proof term / determined via unification / specifiedwith inference system / generalizing CD to a definite clauses, body atom =̂ parameter in the proofterm / subtlety for nonlinear proof termsProof grammar: compressed representation of proof term / lemma name =̂ nonterminal / proof oflemma =̂ grammar production / MGT for lemma proof determinable directly from grammarTheorems can be user-specified strict instances of their proof’s MGT

Compression Techniques Beyond TreeRePair
Nonlinear compression / proof term specific techniques

Implemented System CD Tools, Written in SWI-Prolog
Metamath interface / TreeRePair on DAG representation

First Experiments: dataset-oriented methods and human/machine proof structuring
Properties of set.mm as a grammar / proof dependencies as complex network – it is scale-freeHuman vs. machine proof structurings / lemma synthesis by compressing set.mm further 43
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