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What is ITP all about?

• The semi-official definition: Proof Assistants

– Software that interacts with the user to construct formal proofs

• ... but that isn’t the complete story

ITP is about (formally) proving real theorems

– Theorems that are out of reach for fully automated provers

– Proofs with complex structures and elaborate arguments

• Proof assistants provide a “safe” reasoning environment

– Inference engines that guarantee correctness of proofs

– An infrastructure for developing formal theories

– Assistance for finding proofs and often much more
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For users it’s quite different from ATP

• ITP is no pushbutton technology

– Users must provide guidance, know the rules, and have a proof idea

The system just executes what it’s being told

But it can be pretty smart about that

• . . . but one can accomplish much more with interaction

– Pushbutton technology is stuck when it doesn’t succeed

– Incomplete ITP proofs permit users to decide locally how to proceed

– ATP logics like FOL are very small

They cannot express numbers, induction, or data structures

– (Most) ITP logics are very rich and cover all of mathematics
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The system just executes what it’s being told

But it can be pretty smart about that

• . . . but one can accomplish much more with interaction

– Pushbutton technology is stuck when it doesn’t succeed

– Incomplete ITP proofs permit users to decide locally how to proceed

– ATP logics like FOL are very small

They cannot express numbers, induction, or data structures

– (Most) ITP logics are very rich and cover all of mathematics

Interactive theorem proving is more fun
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A simple example

Prove existence of integer square roots

• Formalization of “integer square root”

– For x ∈N it’s the largest number r such that r2≤x

– Better for proofs: a number r with r2≤x<(r+1)2

• Straightforward proof by induction

– For n=0 choose r=0

– For n>0 assume the existence of a root r′ for n−1

– If (r′+1)2≤x choose r=r′+1, otherwise r=r′

• Proof is beyond the capabilities of ATP

– It needs arithmetic and some user guidance

– With a proof assistant it’s a simple exercise
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The early roots

• Automath (1968): formalizing and checking proofs
– Formal proof language based on Curry Howard isomorphism

– Proof checker based on type checker for λ-Terms

– Influenced development of type theories (Martin-Löf TT, Nuprl TT, CoC,..)

• LCF (1972): interactive proof development
– Proof rules as metalevel programs that transform sequents

– Meta-programs (tactics) control application of rules

– Influenced many ITP systems (Nuprl, Coq, HOL / Isabelle, Lean, ...)

• NQTHM (1971): proof automation
– LISP based quantifier-free computational logic with induction

– Rewriting based automated proofs about computation

– Later systems have decision procedures and simplifier (ACL2, PVS,..)

• MIZAR (1973): formal mathematical libraries
– Formal language and checker for real mathematical papers

– Journal Formalized Mathematics has checked scientific articles
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Many different proof assistants are in use

Mizar (1973), Nuprl (1984), Coq (1988, now called Rocq),

PVS (1992), HOL4 (1994), Agda (1999), Twelf (1999),

ACL2 (2000), Isabelle/HOL (1990/2002), Lean (2013), . . .
https://en.wikipedia.org/wiki/Proof assistant

• There is no such thing as the best proof assistant

– Different systems have different strengths

– Designs vary significantly and are sometimes incompatible

– Every design decision has its pros and cons

• Success depends strongly on the users of a system

– It requires a successful cooperation between the two

– Different users master different systems better than others

– It’s often a matter of personal preference

• . . . but proof assistants have many aspects in common
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Proof assistants have accomplished a lot

• Formal proofs of famous mathematical problems

– Four color theorem (Coq, 2005)

– Kepler conjecture (HOL light/Isabelle, 2015)

– Feit-Thompson theorem (Coq, 2013)

– Erdös-Graham problem (Lean, 2022)

• Complex mathematical theories

– Cubical Type Theory (NuPRL, 2020)

• Improving quality of Software Systems (Nuprl, 1998–2002)

– Ensemble Group communication system (NYSE)

Verified optimization improves performance by a factor of 3–10

Verification of communication protocols detects subtle errors
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ITP is more than just proof search

• Real proofs are never without context

– Theorems are about mathematical theories, programming, security, ...

– Context determines which concepts, insights, or methods may be used

– Proofs depend on existing knowledge

• Interaction requires a user interface

– Users have to edit theorems, proofs, definitions, formal theories, etc.

– Formal constructs should be presented in familiar notation

• Large proofs need structure and automation

– Proofs should not be expressed in terms of primitive inferences

· Inferences should be grouped into large steps

· Trivial proof parts should be completely automated

Proof assistants have to offer appropriate support
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Aspects of Interactive Theorem Provers

• Theoretical Foundation
– Syntax, semantics, and proof calculus of an expressive theory

• Knowledge Management
– Library of theorems, definitions, specific proof methods, and more

• User Interface
– Visual support for communication with library, inference engine,

and other system components

• Inference Engine
– Mechanism that executes proof rules and supports automation

• Additional components
– Code generation, execution, links to external systems, . . .

There are different ways to realize these
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Theoretical Foundations of Proof Assistants

• Most ITPs are based on higher order theories
HOL, Martin-Löf Type Theory, Nuprl Type Theory, Calculus of Constructions, . . .

– Higher-order logics represent concepts by logical properties

– Type Theories express terms and structures like →, ×, +, N directly

• Theories can be classical or intuitionistic (constructive)
– Classical reasoning permits the law of excluded middle (simpler proofs)

– Constructive theories support reasoning about programs (more accurate?)

• Two fundamentally different ways to treat equality
– Intensional: only identical terms are equal (not very practical?)

– Extensional: terms are equal if they have the same value (undecidable)

• Many systems use a sequent-style proof calculus
– Reasoning is synthetic (bottom-up), analytic (top-down), or mixed

• Some theories include a formal meta-theory
– This guarantees correctness of the (implemented) proof calculus
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Requirements on a proof assistant’s library

• Library should support knowledge management
– Constructing definitions, theorems, proofs, methods, documents

– (Re-)using formal knowledge in proofs, methods, documents

– Browsing and searching for “relevant” knowledge

– Grouping knowledge into theories and sub-theories

– Linking, moving, renaming, removing formal knowledge

• More than just collecting data
– Knowledge changes: insights are gaines or turn out to be irrelevant

proofs and proof methods may change as well

– Consistency must be guaranteed (version and dependency control)

– Knowledge should be certified (justification for storing it)

• Library should support decentralized development
– Export, import, merging, and checking theories

– Read and write access control

Many questions remain
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Library: text-oriented design

• Easiest and most common approach
(Isabelle, Coq, MetaPRL, Agda, ACL2, Lean,...)

– Objects are stored in a text file

– Keywords (theory, definition, theorem, proof,...) provide structure

– Data are read, compiled, and “executed” sequentially

– Search and other library mechanisms operate on runtime data

• Pros
+ Standard editors may be used, search via grep or emacs

+ Easy exchange of data, small storage space

• Cons
- Consistency requires strict linear processing

- Single user access, objects can be accessed only one at a time

- No access control possible

- Merging user theories is difficult

- System updates may invalidate user libraries
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Library design in Isabelle and Coq

Library is a textfile presented in an IDE or emacs mode
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Library design in ACL2

Library is a simple textfile, no special presentation mode

(in-package "ACL2") | (defthm natp-rw
| (implies (and (integerp x)

(include-book "inequalities") | (<= 0 x))
| (natp x)))

; theorems about natp, posp |
| (defthm posp-rw

(defthm natp-fc-1 | (implies (and (integerp x)
(implies (natp x) | (< 0 x))

(<= 0 x)) | (posp x)))
:rule-classes :forward-chaining) |

| (defthm |(natp a) <=> (posp a+1)|
(defthm natp-fc-2 | (implies (integerp a)

(implies (natp x) | (equal (posp (+ 1 a))
(integerp x)) | (natp a))))

:rule-classes :forward-chaining) |
| (encapsulate

(defthm posp-fc-1 | ()
(implies (posp x) | (local

(< 0 x)) | (defthm posp-natp-l1
:rule-classes :forward-chaining) | (implies (posp (+ -1 x))

| (natp (+ -1 (+ -1 x))))))
(defthm posp-fc-2 |

(implies (posp x) | (defthm posp-natp
(integerp x)) | (implies (posp (+ -1 x))

:rule-classes :forward-chaining) | (natp (+ -2 x)))
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Library as abstract database

• Global view on formal knowledge (Nuprl)

– “Mathematical knowledge is universal and not user-dependent”

– Knowledge is maintained globally, not on a user’s computer

– Access through a database management system (c.f. online booking)

– DBMS maintains names, structure, and access rights

• Cons
- Complex design, objects cannot be edited like text

- Synchronization, theory import/export only through the DBMS

• Pros
+ Multi-user cooperation possible, many objects visible simultaneously

+ Selective views and combinations of theories possible

+ Access control and transaction concept with multiple undo/redo

consistency is guaranteed, version control possible

increased security against user errors or system crashes
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Library design in Nuprl (shown via a tty-like interface)

- TERM: Navigator

MkTHY* OpenThy* CloseThy* ExportThy* ChkThy* ChkAllThys* ChkOpenThy*

CheckMinTHY* MinTHY* EphTHY* ExTHY*

Mill* ObidCollector* NameSearch* PathStack* RaiseTopLoops*

PrintObjTerm* PrintObj* MkThyDocObj* ProofHelp* FixRefEnvs*

CpObj* reNameObj* EditProperty* SaveObj* RmLink* MkLink* RmGroup*

MkTHM* MkML* AddDef* AddRecDef* AddRecMod* AddDefDisp* AbReduce*

Act* DeAct* MkThyDir* RmThyObj* MvThyObj*

↑↑↑↑ ↑↑↑ ↓↓↓↓ ↓↓↓ <> ><

Navigator: [num thy 1; standard; theories]

List Scroll : Total 159, Point 5, Visible : 10

----------------------------------------------
CODE TTF RE init num thy 1

COM TTF num thy 1 begin

COM TTF num thy 1 summary

COM TTF num thy 1 intro

DISP TTF divides df

-> ABS TTF divides

STM TTF divides wf

STM TTF comb for divides wf

STM TTF zero divs only zero

STM TTF one divs any
----------------------------------------------

– Visual navigation through knowledge base (mouse/arrows)

– Opening objects starts object-specific editors

– Buttons for library commands
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Requirements on a proof assistant’s user interface

Visual support for managing knowledge

• Users have to develop theories interactively

– Editing theories, definitions, theorems, proofs, documentation, ...

– System has to present (intermediate) results of user activities

– System should support revisiting previous steps,

simultaneous access to several objects, alternative proof attempts, ...

• Layout is important

– Comprehensibility of formal text is a matter of notation

Machine-level formalization makes formal theories almost unreadable

– Interface should support conventional mathematical notation(s)
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User Interface: script-oriented design

• Simple extension of a command line prover
(Isabelle, Coq, MetaPRL, ACL2, SpecWare)

– Definitions, theorems, proof scripts, etc. result from entering

keywords, formulas, and commands into a text file.

– Interface (e.g. ProofGeneral, CoqIDE, jEdit) between text file and system

supports serial, sometimes parallel processing of theories and scripts

– System ouput is shown in a separate window

• Pros
+ Easy to learn for beginners, familiar editors may be used

+ Easy to implement

• Cons
- Text-oriented approach,

- At any given time only one proof goal is visible

- Flexibility of formal notation limited by capabilities of the parser
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Interface design in Isabelle

Interface shows proof node corresponding to cursor position
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Interface design in Coq

Interface sends script commands to Coq interpreter

and shows proof node corresponding to cursor position
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Interface design in ACL2

Shell command loads theory file into the system

ALC2 attempts automated proof and shows result

or a detailed error message
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User Interface: visual interaction

• Specialized editors for library objects (Nuprl)

– Users navigate through library, proof tree, term tree, etc.

– Notation for objects is independent from internal representation

– Structure editors support entering and manipulating objects

• Cons
- Steep learning curve for beginners (much to be learned)

- Implementation requires significant effort

• Pros
+ Simultaneous access to a large variety of information

+ Several proof goals may be processed in parallel

+ Several proof attempts for the same goal may be processed in parallel

+ Flexible syntax without a need for complex parsers

+ Separation between internal representation and external notation

permits dapting the vocabulary of formal documents
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Interface design in Nuprl

- TERM: Navigator

....

MkTHM* MkML* AddDef* AddRecDef* ...

↑↑↑↑ ↑↑↑ ↓↓↓↓ ↓↓↓ <> ><

Navigator: [kreitz; user; theories]

List Scroll : Total 1, Point 0, Visible : 1
----------------------------------------------
-> STM FFF not over and
----------------------------------------------

- PRF: not over and

# top
∀A,B:P. (((¬A) ∨ (¬B)) ⇒ (¬(A ∧ B)))

BY allI

# 1

1. A:P
⊢ ∀B:P. (((¬A) ∨ (¬B)) ⇒ (¬(A ∧ B)))

BY

• Creating theorems
– User generates named library object for theorems (button)

– User opens editor for object (mouse click) and enters proof goal

– Editor saves proof goal as library object

• Creating proofs
– User enters name of rule or tactic into rule slot

– Inference engine may be run synchronously or asynchronously

– Subgoals are stored in the library and shown in proof editor

– Visible part of proof tree depends only on window size
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Components of Nuprl’s user interface

• Navigator
– Visual navigation through library and execution of library commands

• Term editor
– Structur editing of terms within the presentation form

• Proof editor
– Proof construction/modification and navigation through proof tree

• Object specific editors
– Editing meta-programs (tactics), presentation forms, comments, ...

• Command interface
– Interpretation of meta-programs and commands

• Designed as independent process
– Several interfaces may access the same library object simultaneously

Graphical interface is purposefully very simple
– Standard text terminal version permits low bandwidth remote access

– Implementing GUIs based on current standards is not a trivial task
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Requirements on an ITP’s inference engine

• Processing inference rules

– Proof Checking: testing correctness of (complete) formal proofs

– Proof Editing: supporting the development of a formal proof

apply rules to proof goal, and generate/show subgoals

– Only difference is the form of interaction with users

– Easy to implement: encode meta-level concepts (proof, rule,...)

of the theoretical foundation as meta-programs

• Supporting partial automation of the proof process

– Interal extensions to the proof calculus through meta-programs (safe)

– Built-in proof procedures for specific tasks (verification required)

– Interaction with external proof systems (trusted or with validation)
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Automating the proof process

• Derived inference rules (Nuprl, Coq, Lean, Isabelle)

– Turn theorems of the form ∀x:T.A[x]⇒B[x] into formal rules

– Implementation via simple pattern matching and instantiation

– Safe (conservative) extension of the theoretical foundation

• Tactics (Nuprl, Coq, Lean)

– Meta-programs control the application of primitive inference rules

from combining rules via combinators (e.g. t1 THEN t2, Repeat t, . . . )

to elaborate programs that analyze proof goals and plan proofs

– Easy if ITP provides a meta-programming language

– Safe user-definable extension of the proof calculus

– Proof assistants usually provide many predefined tactics

• Reflection (Coq, Lean, Isabelle, Nuprl)

– Proof procedures bypass primitive inferences

but have been verified within the proof assistant
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Automating the proof process II

• Built-in proof procedures (Nuprl, Coq, Lean, Isabelle, ACL2, Agda,...)

– Procedures that are difficult or too slow to implement as tactics

and too hard to be formally verified by reflection

– Decision procedures for small sub-theories

– Simplifier, automatic (brute-force) proof search,

• User-defined extensions of system procedures
(Nuprl, Coq, Lean, Isabelle)

– Adding theorems and tactics via hooks (e.g. equalities for simplifiers)

– Risky: may cause the system procedure to loop

• Control parameters / Hints (Coq, Isabelle, ACL2)

– User may change depth and order of proof search

– Requires understanding the implemented system procedure

• Calls to external proof systems (Nuprl, Isabelle, Coq)

– Logic interface as bridge for syntactical and semantical differences

– External prover may be run in trusted (unchecked) mode

or as proof planner for a tactic that validates the proof
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Additional components and features

• Code generation from constructive proofs
(Nuprl, Isabelle, Coq, Lean)

– Generated code is correct by construction

– Very difficult for classical theories

• Code evaluation (Nuprl, Coq, Lean)

– Helpful for runtime analysis and verified code optimization

• Multiple inference engines and interfaces (Nuprl)

– Support for distributed and cooperative proof construction

• Formal document creation (Nuprl, Coq, Lean)

– Text documents with integrated library objects and proofs

– Document changes as objects or proofs are modified
......
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Conclusion

• Much has been accomplished
. . . but so far accomplishing significant results is still tedious

• Where should we go from here?
– More generic ATP and higher speed doesn’t really help in practice

– Focus should be on intelligent automation to make work easier

• Self-improving proof database (Nuprl 6†)

– Successful inferences generated during a proof are stored permanently

Proof fragments may be improved (e.g. remove unneeded assumptions)

– Fragment database and proof caching support proof reuse

• The future may lie in learning proofs
– In 7/25 Harmonic AI Inc raised $100M to learn from proofs (Lean)

– This would require ten thousands of inferences as training data

Without a proof database these must be generated and stored separately

There is potential for significant improvements


