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Introduction

Introduction

e Modal logics are among the most widely and extensively studied logical formalism

e We will focus on the so-called modal cube, extensions of basic modal logic with arbitrary subsets of
five additional axioms

e We will consider a small number of approaches to reasoning in the logics of the modal cube that
have been proposed over several decades

e How effective are they?
e What benchmarks can we use for this purpose?

e Did we make progress?
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Syntax and Semantics of Modal Logics

Background

e Basic modal logic K: Propositional logic extended with unary operators
O (‘box’, ‘necessarily’) and
<& (‘diamond’, ‘possibly’)
e Semantics of modal formulae is given by Kripke structures
M= {((W,R),V)=(W,R, V) where — W is a set of world
— R is a binary accessibility relation on W
— V is a valuation: V(p) C W for p € P

eg o;(p M, wEp iff we V(p)
/ Of(p O— M, wi=—@ iff M,w o
MwEo@eviff MwkE @ or M,w =1V

o M,w = O¢ iff for every v € W,
<>((g\A ® if wRv then M, v = @
eD(p M,w = O@  iff for some v € W,
U <o wRv and M, v = @
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Syntax and Semantics of Modal Logics

e Basic logic K: Propositional logic extended with unary operators By
O (‘box/, ‘necessarily’) and
<& (‘diamond’, ‘possibly’)
e Semantics of modal formulae is given by Kripke structures
M= {(W,R),V)=(W,R, V) where — W is a set of world
— R is a binary accessibility relation on W
— V is a valuation: V(p) C W for p e P

A formula @ is K-satisfiable iff there is a (finite tree) Kripke structure M with root w € W
such that (M, w) E ¢

PSPACE-complete problem [Ladner 77, Halpern and Moses 92]

e In a tree Kripke structure M every world w € W has a unique modal level, mly (w),
given by the distance of w to the root

U. Hustadt: Modal Logic Reasoning: The Long View (Deduktionstreffen 2025)



Hilbert-style Proof System for Modal Logics

Background

Proof System hK for Modal Logic K =
Axioms of Propositional Logic

+ K/ Normality
Ofe =) = (Be = )

+  Duality
Op =—<0—¢

+  Modus Ponens
(@ =Yoot

+  Necessitation
e+ 0Oe

A formula @ is provable in hK iff =@ is not K-satisfiable
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The Modal Cube

Background
S4 =KT4 S5 = KT5
= KBD4
Axiom Frame Property =KBT4
. KT KTB
D|Op—<e Serial =
Vv3iw.vRw
T|Op—e@ Reflexive KD4 KD45
Yw.wRw KD5
B | @ =00 Symmetric KD KDB
Yvw.vRw — wRv
4 | O — OO¢ | Transitive
Yuvw.(uRv /\ vRw) — uRw Ka K45 KB4 = KB5
5 | O¢@ — OC@ | Euclidean Ks / = KB45
Yuvw.(uRv N\ uRw) — vRw K KB

There are 15 distinct logics that can be formed by adding a subset of {B,D, T, 4,5} to hK

A formula ¢ is KXZ-provable iff it is provable in hK + X.

U. Hustadt: Modal Logic Reasoning: The Long View (Deduktionstreffen 2025)



The Modal Cube

S4 = KT4 S5 = KT5
i / / = KBD4 Background
Axiom Frame Property =KBT4
- KT KTB _
D|Op—<e Serial =
Vv3iw.vRw
T |Op— @ Reflexive KD4 KD45
Yw.wRw KD5
B | e—00p Symmetric KD KDB
Yvw.vRw — wRv
4 | Op — OO¢@ | Transitive
Yuvw.(uRv /\ vRw) — uRw K4 K45 KB4 = KB5
5 | ©@ — OOC@ | Euclidean K5 / = KB45
Yuvw.(uRv /\ uRw) — vRw K KB

There are 15 distinct logics that can be formed by adding a subset of {B,D, T, 4,5} to hK

A formula ¢ is KZ-satisfiable iff there is a (rooted) Kripke structure M = (W, R, V) and w € W
such that (1) R satisfies all the frame properties corresponding to axioms in £

(2) (M,w) = @
M is a KX-model of ¢
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The Modal Cube

Background
S4 = KT4 S5 = KT5
= KBD4
Axiom Frame Property =KBT4
- KT KTB _
D|Op—<e Serial =
Vv3aw.vRw
T|Op— e Reflexive KD4 KD45
Yw.wRw KD5
B| e—00Ce Symmetric KD KDB
Yvw.vRw — wRv
4 | O — OO | Transitive
Yuvw.(uRv /\ vRw) — uRw K4 K45 KB4 = KB5
5 | 0@ — OO | Euclidean K5 / = KB45
Yuvw.(uRv /\ uRw) — vRw K KB

There are 15 distinct logics that can be formed by adding a subset of {B,D, T, 4,5} to hK

A formula @ is is KZ-provable iff —¢ is not KX-satisfiable
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Reasoning in the Modal Cube: Relational Translation

e We want to determine whether a modal formula ¢ is KX-satisfiable / KX-provable M 6
. . . . Relational
e |dea 1: We can simply write down the semantics of ¢ as first-order formula and Translation

give it to a first-order theorem prover

MwEp iffwe V(p) MwEe@vyiff M,wlkE @ or M,w E 1
M, w = O iff for every v € W, M,w = O@  iff for some v € W,
if wRv then M, v = ¢ wRv and M,v = @

~+ we do not need to include M in the formula
~+ instead of M, w = p we can then write p(w)

Op/ A\ O—p becomes Vv.R(w,v)— p(v)AIv.R(w,v)/A\—p(v)
Op AO—-p becomes Vv.R(w,v)— p(v) AVv.R(w,v)— —p(v)

e To deal with X we add the corresponding frame properties to the first-order formula
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How well does Idea 1 work?

e For benchmarking we use 100 satisfiable and 100 unsatisfiable modal formulae for each logic
~> 1500 satisfiable and 1500 unsatisfiable formulae in total

Idea 1:

e Each prover is given 100 CPU seconds to solve each formula Relational

Translation

(median time over five runs)

Relational translation on Unsatisfiable Formulae Relational translation on Satisfiable Formulae
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How well does Idea 1 work?

e For each logic Rel(KZX), the Rel(KX) subfragment of FOL consisting of formulae obtained as the

relational translation of modal formulae for KX has a decidable satisfiability problem Idea 1:
Relational
e But standard first-order calculi (resolution) are not decision procedures for any of the Rel(KZX) Translation

fragments
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Reasoning in the Modal Cube: Definitional Clause Normal Form

e |dea 2:
Introduce new names for each non-atomic subformula of a modal formula ¢ / the corresponding

subformulae of its relational translation

e Possible clauses:

ﬁqﬁp(w) Vv "p(WJ ﬁqm\.«p(W) Vv q(p(W) v qlb(W)
“qoe (W) v R(w, V) v ge(v)  Tqoe(w) v R(w, fou(w))
“Goe (W) Vv qe(foe(w))

e We deal with £ again by adding the corresponding frame properties as before

e We can then obtain decision procedures based on ordered resolution for all KL where 4,5 ¢ &
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How well does

Definitional CNF on Unsatisfiable Formulae

Idea 2 work?

Definitional CNF on Satisfiable Formulae

Runtime (CPU seconds)
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How well does Idea 2 work?

e Problem 1: Resolution steps neither respect modal levels nor the distinction between & and O

e Problem 2: Resolution steps are ‘too small’

Consider O((pv g) AO(—p v q)) AO—q

(1) gilwo) [R.(6)2,(9)2] (12) —g3(V)v—gs(V)vq(V)
(2) —q(V) v R(V, f(V)) [R.(7)2,(10)2] (13) —qi(V)v—aqu(V) v qs(g(V))
(3) —aq(V) v aq(f(V)) [R.(9)3,(11)2] (14) —gs(V)v—p(V) v —gs(V)
(4) —q(V)vags(V) [R.(13)3,(14)3] (15) —qu(V) v —qu(V)
(5) —q2(V) v aqu(V) v —qs(g(V)) v—plg(V))
(6) —gs(V)vp(V)va(V) [R.(8)2,(15)3] (16) —qi(V)v —q(V) v —p(g(V))
(M) —qu(V)vR(V, g(V)) :
(8) —aqu(V)vags(g(V))
(9) —gs(V)v—p(V)vq(V)

(10) —q:i(V)v—=R(V, W) v gs(W)

(11) —gs(V) v —q(V)
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Modal Resolution for the Modal Cube

Idea 3: Use a modal clausal normal form and modal resolution calculus

To deal with axioms in X, add instances of the axioms

Recall that every K-satisfiable formula has a rooted tree Kripke model
where every world w has a unique modal level, mly(w) given by the distance of w to the root

e Separated Normal Form with Sets of Modal Levels SNF_, Idea 3:
e Literal clause S: \/f-;1 I; VYw.if mly(w) € S then M, w = \/ﬁil l; Retuin
® Positive modal clause S:I"—adl Vw.if mly(w) € S then M,w = 1" — O/
e Negative modal clause Sl = Ol VYw.if mly(w) € S then M,w = 1" — O

where S C N (possibly infinite)

e Disjunctions here are are sets of literals (not multi-sets)

Only 0: L, where L is the empty disjunction of literals, is a clause that is K-unsatisfiable on its own
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Normal Form Transformation and Axioms

e The transformation to normal form p, starts with
{{0}:ty, {O}:ty— ]}

and uses a new propositional symbol (surrogate) n({) = ty, for (almost) every subformula \ of ¢
Idea 3:

KD (O — O): Modal

Resolution

OU{S:toy = M)} = DOU{S:toy — (), S: tay — oY), SZ :n(Y) — P}

KT (09 — ):
OU{S:toy > On(p)} = QU(S:toy = On),S:~toy vn(P)SUST in(h) — P}

K4 (O — OOY):
QU{S:tgy — )} = DQU{SZ:toy = D), S? : toy — Otay, (ST)Z :m(Y) — )

where ST ={/+1eN|/€ S}, SZ ={n|n>min(S)},
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Normal Form Transformation and Axioms

Theorem

Let L be a logic in the modal cube,
© be a modal formula and
® = p, (@) be the normal form of ¢ for L.

Then ¢ is L-satisfiable iff ® is K-satisfiable

Idea 3:
Modal
Resolution
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A Calculus for SNF

sml
50 : /1, — D/l
50 : Dv i 50 : ll — gl 51 : l2/ — D_‘ll
LRES Si: D'v—lI MRES S1:0 b= Ol GEN2 St = Ob
"SNS :DvD TSNS kvl (S0, S1, Sob i =l v =l v =1
50 : /1, — D“ll 50 : /1, — D“ll I'\jz::‘.
. X Resolution
Smfl : /r/n — I:‘_‘/m Sm71 : /r/n — D_‘/m
Y | Sp: 1IN — Ol
Smi1: hv vV Spir: vy,
GEN1: —"1° 7 GEN3: 2 * 1 m
St —lv.. . vl vl Sl . vl vl

where S=(\So,...,Sm S,.1} in GEN1 and GEN3
Spii=iml—1eN|[mle 5,1}

m

and inference steps are only performed if the labelling set in the resolvent is non-empty
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A Calculus for SNF

sml

e Tautology:
S:pv—pv Cis a tautology

Subsumption:
So : C subsumes S; : C v D where S; C Sy and D is a possibly empty disjunction of literals

Derivation from @:
O = Oy, Oy, ..., where for each i > 0,

Idea 3:

(i) @jv1 =®;U{ml: C} where ml: C is derived from clauses in @;, Modal

Resolution

not a tautology,
and not subsumed by a clause in @;; or
(i) @1y = ©; —{ml : C} where ml : C is subsumed by a clause in ®; —{m/: C}
Refutation of @:
A derivation ® = @y, @,,..., D, where @, contains S: L with0e€ S

e O is saturated:
no clause can be derived from @ that is not a tautology or subsumed by a clause in @
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A Calculus for SNF_,

e Efficiency of the calculus can be improved by restricting the applicability of the LRES
(‘propositional’ binary resolution) rule

e Negative resolution: One of the premises contains only negative literals

Additional restrictions on normal form:
Only positive literals in modal clauses ~ SNF_,,

Idea 3:
Modal
Resolution

e Positive resolution: One of the premises contains only positive literals

Additional restrictions on normal form:
Only negative literals in modal clauses ~» SNF

e Ordered resolution: For premises C v/ and D v =/, | must be maximal wrt to C and
—/ must be maximal wrt to D
Additional restrictions on normal form and ordering:
Below modal operators we must have fresh propositional symbols that are smaller than the

original propositional symbols ~ SNF.%

e The additional restrictions on the normal form can be enforced by additional renamings
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A Calculus for SNF_,

Let
L be a logic in the modal cube

@ be a modal formula
SNF,_ ,, SNF.  or SNF %

sml» sml» sml

@ be the corresponding finite set of clauses in SNF

sml1

@’ be the saturation of @ with respect to the corresponding refinement of the calculus for SNF_,

Theorem e 3

@ is L-unsatisfiable iff ® has a refutation with respect to the corresponding refinement of the calculus wid

Resolution

Theorem
If @ is L-satisfiable then ® and ®' are K-satisfiable and from the tree model M of ®' we can
construct an L-model of ¢
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A Calculus for SNF_,

e We do not have an implementation of the calculus for SNF_,,

e Instead there are two implementations of related calculi

1. Global Modal Resolution (GMR) calculus:
— Overapproximates every clause S : 1 by N : 1, except for {0} : t,
— Generates instances of axioms ‘on-the-fly’ by additional inference rules
2. Modal-layered Resolution (MLR) calculus: Idea 3:
— Allows only singleton labelling sets {m/}:{ = m/ : Modal
— Approximate S :\ by mh :, ..., ml
where ml; € S, ml; < bfp, b@ is a logic- and formula-dependend bound
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Empirical Evalution: Benchmarks

e As satisfiable benchmark formulae we use 100 S5-satisfiable formulae
~> satisfiable in any logic of the modal cube
~ effort to find a model varies depending on logic

e As unsatisfiable benchmark formulae we use 100 K-unsatisfiable formulae
that are modified for each logic so that logic specific reasoning is required
~ effort to find a refutation varies depending on logic

Benchmarks

U. Hustadt: Modal Logic Reasoning: The Long View (Deduktionstreffen 2025)



Empirical Evaluation: Benchmarks (CADE 2021)

S4-KTd— 552 E;;:KBD“ K-Unsatisfiable formulae
/ Replace each propositional variable p by p v LL)‘L’:
K K Logic L | W/
K false
KD4 KD45 KB (—gp /A Oqp)
KDbs KDB (—qp A ©O((O—g) AOqp) v gp))
Kb R KTB (=g A CO((—g, A Dg)) v agp))
KD (0—qp A Ogj,)
Ka K45 KB4 = KB5 = KB45 KT (—gp AN Oqp)
Ks / K4 [qu/\<><>ﬁqp) N
L — K4B (—gp A ©OOg,) encnmarks
KD4 (Ogy A ©000—q,)
S5-Satisfiable | K-Unsatisfiable K5 (=g, A ©Bgp) ) /
k_polyn k_branch_p KDs ((B=gp, ADgy) v (0O, A Oﬁ/qp)
s4.mdn k_path.p K45 (Ogp, A 08gy A OO (g, v —ap))
s4_phn K_ph_p KD45 ((O—g, A Ogy) A )
s4_pathn k_poly_p (Dcfp A Oqu AN OO(=gp v —p))
s4.s5.n k_tdp.p S4 (—g, ANO(—q, v Oqgy) A CO—qp)
S5 ((=g» A\ Ogy) v (=g} A ©00D0g))

20 formulae in each family (100 for each logic)
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Empirical Evaluation: Benchmarks (DT 2025)

e Provers started to implement modal logic specific simplifications, e.g.,
K4 : 00 = O

~> allows such provers to undo the replacement of p by p v

e The following alternative modifications mostly disable those modal logic specific simplifications

Logic L | W7 Logic L | W7
K false KTB ((ﬁqg/\ﬁq;/\ﬂ(qg q;))
KB (g3 v —gp) A ©Ogl A ©DOg}) v (=gl v —gk) A OOgI A ©Oq})) Benchmarks
KDB ((B(=g8 A—=gi) NDO(qd v q3)) KD4 ((B(=g5 A—=gp) NDO(qd v q3))
v ((—g) v —qp) A ©Og) A ©Ogqp)) v (B(q) v gp) A OO(—=g) A —qp)))
K4 (T(q) v ap) AN OO(—=g A —ap)) S4 (g3 N O(=q3 v Ogp) A O(g N O (—ap A =q3)))
K5 (0—=gd A ©Ogl) KD5 (B(=ad A—=gp) NO(ad v ap))
KB4 (g5 v —gp) N O(g3 A ©Ogl) v (0=gI N C(g5 A Tgl))
A O(—=g2 A\ ©dgp)) S5 ((—g3 A—=gi ANO(a5 v qh))
K45 (Og3 A\ 0Dy A ©O—q? V(g ACU@E A —a) A O3 A—ap) AO(gh ADgp)))))
N C(G@ENAO(—=gd v —gp))) KD45 ((O(=gd AN =g ) AO(gd v qp))
KD (O(—gs A —gp) ANDO(g5 v ap)) v (BGNAC(@PATG) N O N O(GE A (—ad v —a3))))
KT (—gS A—gs AD(qd v qp))

U. Hustadt: Modal Logic Reasoning: The Long View (Deduktionstreffen 2025)



How well does Idea 3 work?

Modal Resolution on Unsatisfiable Formulae Modal Resolution on Satisfiable Formulae
T T T T T T T T T T
100 - B 100 |-
’%T 80 - - ’%T 80 -
2 2
5 5
O O
& 60| B 5 60l B
) >
o o
< <
o 40p y o 40 1 Benchmarks
£ £
g g
2 20f 4 2 20f .
0 0
I I I I I I I I I I
0 200 400 600 800 1,000 0 200 400 600 800 1,000
Instances Solved GMR (ordered) MLR (ordered) Instances Solved
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Conclusions, Future Work, Questions

e Global Modal Resolution currently offers the best overall performance on the logics of the modal
cube
e The normal form used for Global Modal Resolution is closely related to the definitional clause
normal form which performed worse
e The performance gain is therefore most likely linked to
e the hyperresolution-like inference rules of Global Modal Resolution
e the use of on-the-fly generated instances of axioms instead of relational frame properties
Future work: Extend the comparison to include the axiomatic translation
from modal to first-order logic to disentangle these factors
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Conclusions, Future Work, Questions

e Our modal resolution approach offers a number of advantages:
e provides decision procedures for all 15 logics of the modal cube
e provides proofs
e provides models (implemented only for the ordered refinement)

e But there are faster provers for specific logics

e In particular, the fastest prover for the six logics K, KB, KD, KT, K4, K5 offers neither proofs nor

models Conclusi
onclusions,
. . . . Future
e We have also seen that the relational translation without the use of definitional clause normal form Work,

Questions

can result in better performance though it does not provide a decision procedure

e Question: What criteria should we use for the inclusion or exclusion of an approach / prover in a
comparison?
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