Modal Logic Reasoning: The Long View

Ullrich Hustadt

University of Liverpool

(Joint work with Clare Dixon, Cláudia Nalon, Fabio Papacchini, Renate A. Schmidt)

Deduktionstreffen 2025

Table of contents

- 1. Introduction
- 2. Background
- 3. Idea 1: Relational Translation
- 4. Idea 2: Definitional Clause Normal Form
- 5. Idea 3: Modal Resolution
- 6 Benchmarks
- 7. Conclusions, Future Work, Questions

Background

lea 1: elational ranslation

ea z: efinitional ause

odal solution

nchmarks

nclusions, ture

- Modal logics are among the most widely and extensively studied logical formalism
- We will focus on the so-called modal cube, extensions of basic modal logic with arbitrary subsets of five additional axioms
- We will consider a small number of approaches to reasoning in the logics of the modal cube that have been proposed over several decades
 - How effective are thev?
 - What benchmarks can we use for this purpose?
 - Did we make progress?

Syntax and Semantics of Modal Logics

- Basic modal logic K: Propositional logic extended with unary operators
 - □ ('box', 'necessarily') and ♦ ('diamond', 'possibly')
- Semantics of modal formulae is given by Kripke structures

$$M = \langle \langle W, R \rangle, V \rangle = \langle W, R, V \rangle$$
 where $-W$ is a set of world

- -R is a binary accessibility relation on W
- V is a valuation: $V(p) \subseteq W$ for $p \in P$


```
\begin{array}{ll}
\neg \varphi \\
\square \varphi \\
\square \neg \varphi
\end{array} \qquad M, w \models p \qquad \text{iff } w \in V(p)
M, w \models \neg \varphi \qquad \text{iff } M, w \not\models \varphi
M, w \models \varphi \lor \psi \text{ iff } M, w \models \varphi \text{ or } M, w \models \psi
M, w \models \square \varphi \qquad \text{iff for every } v \in W,
\text{if } wRv \text{ then } M, v \models \varphi
M, w \models \Diamond \varphi \qquad \text{iff for some } v \in W,
wRv \text{ and } M, v \models \varphi
```

Introduction

Background

ldea 1: Relational Translation

Definitional Clause

dea 3: Modal Resolution

nchmarks

onclusions, uture /ork, uestions

Syntax and Semantics of Modal Logics

- Basic logic K: Propositional logic extended with unary operators
 - \Box ('box', 'necessarily') and
 - ♦ ('diamond', 'possibly')
- Semantics of modal formulae is given by Kripke structures

$$M = \langle \langle W, R \rangle, V \rangle = \langle W, R, V \rangle$$
 where $-W$ is a set of world

- -R is a binary accessibility relation on W
 - -V is a valuation: $V(p) \subseteq W$ for p ∈ P

A formula φ is K-satisfiable iff there is a (finite tree) Kripke structure M with root $w \in W$ such that $\langle M, w \rangle \models \varphi$

PSPACE-complete problem [Ladner 77, Halpern and Moses 92]

• In a tree Kripke structure M every world $w \in W$ has a unique modal level, $ml_M(w)$, given by the distance of w to the root

Introduction

Background

ldea 1: Relational

ldea 2: Definitional Clause Normal Form

Modal Resolution

Conclusions, Future

Future Work, Questions

Hilbert-style Proof System for Modal Logics

Proof System hK for Modal Logic K = Axioms of Propositional Logic

- $\vdash \mathsf{K} / \mathsf{Normality}$ $\Box(\varphi \to \psi) \to (\Box \varphi \to \Box \psi)$
- + Duality $\Box \varphi \equiv \neg \diamondsuit \neg \varphi$
 - Modus Ponens
- Modus Ponens $(\phi \rightarrow \psi), \phi \vdash \psi$
- + Necessitation $\varphi \vdash \Box \varphi$

A formula φ is provable in hK iff $\neg \varphi$ is not K-satisfiable

Introduction

ldea 1: Relational

Definitional Clause

> lodal esolution

enchmarks onclusions,

onclusions iture ork, uestions

The Modal Cube

	Axiom	Frame Property
D	$\Box \phi \to \Diamond \phi$	Serial
		$\forall v \exists w. vRw$
Т	$\Box \phi \to \phi$	Reflexive
		∀w.wRw
В	$\phi \to \Box \diamondsuit \phi$	Symmetric
		$\forall vw.vRw \rightarrow wRv$
4	$\Box \phi \to \Box \Box \phi$	Transitive
		$\forall uvw.(uRv \land vRw) \rightarrow uRw$
5	$\Diamond \phi \to \Box \Diamond \phi$	Euclidean
		$\forall uvw.(uRv \wedge uRw) \rightarrow vRw$

There are 15 distinct logics that can be formed by adding a subset of {B, D, T, 4, 5} to hK

A formula ϕ is $K\Sigma$ -provable iff it is provable in $hK+\Sigma$.

mirodactio

Background

idea 1: Relational Translatioi

Definitional Clause Normal Form

dea 3: Modal Resolution

enchmarks

Conclusions Future Work, Questions

The Modal Cube

	Axiom	Frame Property
	AXIOIII	Traine Troperty
D	$\Box \phi \rightarrow \Diamond \phi$	Serial
		$\forall v \exists w. vRw$
Т	$\Box \phi \rightarrow \phi$	Reflexive
		$\forall w.wRw$
В	$\phi \to \Box \diamondsuit \phi$	Symmetric
		$\forall vw.vRw \rightarrow wRv$
4	$\Box \phi \to \Box \Box \phi$	Transitive
		$\forall uvw.(uRv \land vRw) \rightarrow uRw$
5	$\Diamond \phi \to \Box \Diamond \phi$	Euclidean
		$\forall uvw.(uRv \wedge uRw) \rightarrow vRw$

There are 15 distinct logics that can be formed by adding a subset of {B, D, T, 4, 5} to hK

A formula φ is K Σ -satisfiable iff there is a (rooted) Kripke structure $M=\langle W,R,V\rangle$ and $w\in W$ such that (1) R satisfies all the frame properties corresponding to axioms in Σ

M is a $K\Sigma$ -model of φ

 $(2) \langle M, w \rangle \models \varphi$

Background

ldea 1: Relational Translatior

Definitional Clause

lea 3: Iodal esolution

onclusions, uture Vork, Juestions

The Modal Cube

	Axiom	Frame Property
D	$\Box \phi \to \Diamond \phi$	Serial
		$\forall v \exists w. vRw$
Т	$\Box \phi \rightarrow \phi$	Reflexive
		∀w.wRw
В	$\phi \to \Box \diamondsuit \phi$	Symmetric
		$\forall vw.vRw \rightarrow wRv$
4	$\Box \phi \to \Box \Box \phi$	Transitive
		$\forall uvw.(uRv \land vRw) \rightarrow uRw$
5	$\Diamond \phi \to \Box \Diamond \phi$	Euclidean
		$\forall uvw.(uRv \wedge uRw) \rightarrow vRw$

There are 15 distinct logics that can be formed by adding a subset of {B, D, T, 4, 5} to hK

A formula ϕ is is $K\Sigma$ -provable iff $\neg \phi$ is not $K\Sigma$ -satisfiable

Introductio

Background

ldea 1: Relational Translatioı

dea 2: Definitional Clause

dea 3: Modal lesolution

nchmarks

Conclusions Future Work, Questions

Reasoning in the Modal Cube: Relational Translation

- We want to determine whether a modal formula φ is $K\Sigma$ -satisfiable / $K\Sigma$ -provable
- ullet ldea 1: We can simply write down the semantics of ϕ as first-order formula and give it to a first-order theorem prover

```
\begin{array}{ll} \textit{M}, \textit{w} \vDash \textit{p} & \text{iff } \textit{w} \in \textit{V}(\textit{p}) & \textit{M}, \textit{w} \vDash \textit{\phi} \lor \psi \text{ iff } \textit{M}, \textit{w} \vDash \textit{\phi} \text{ or } \textit{M}, \textit{w} \vDash \psi \\ \textit{M}, \textit{w} \vDash \Box \textit{\phi} & \text{iff for every } \textit{v} \in \textit{W}, \\ & \textit{if } \textit{wRv} \text{ then } \textit{M}, \textit{v} \vDash \textit{\phi} & \textit{wRv} \text{ and } \textit{M}, \textit{v} \vDash \textit{\phi} \end{array}
```

 \rightarrow we do not need to include M in the formula

 \rightarrow instead of $M, w \models p$ we can then write p(w)

$$\Box p \land \Diamond \neg p \quad \text{becomes} \quad \forall v.R(w,v) \rightarrow p(v) \land \exists v.R(w,v) \land \neg p(v)$$
$$\Box p \land \Box \neg p \quad \text{becomes} \quad \forall v.R(w,v) \rightarrow p(v) \land \forall v.R(w,v) \rightarrow \neg p(v)$$

ullet To deal with Σ we add the corresponding frame properties to the first-order formula

Background

ldea 1: Relational Translation

> ea 2: efinitional lause ormal Form

lesolution

encnmarks

onclusions, uture /ork, uestions

How well does Idea 1 work?

- Each prover is given 100 CPU seconds to solve each formula (median time over five runs)

Background

Idea 1:
Relational

Relational Translation

> Definitional Elause Iormal Form

> esolution enchmarks

onclusions, uture /ork, uestions

How well does Idea 1 work?

- For each logic $Rel(K\Sigma)$, the $Rel(K\Sigma)$ subfragment of FOL consisting of formulae obtained as the relational translation of modal formulae for $K\Sigma$ has a decidable satisfiability problem
- But standard first-order calculi (resolution) are not decision procedures for any of the $Rel(K\Sigma)$ fragments

Idea 1: Relational Translation

Reasoning in the Modal Cube: Definitional Clause Normal Form

• Idea 2:

Introduce new names for each non-atomic subformula of a modal formula ϕ / the corresponding subformulae of its relational translation

Possible clauses:

$$\neg q_{\neg p}(w) \lor \neg p(w) \qquad \neg q_{\varphi \lor \psi}(w) \lor q_{\varphi}(w) \lor q_{\psi}(w)
\neg q_{\Box \varphi}(w) \lor \neg R(w, v) \lor q_{\varphi}(v) \qquad \neg q_{\Diamond \varphi}(w) \lor R(w, f_{\Diamond \varphi}(w))
\neg q_{\Diamond \varphi}(w) \lor q_{\varphi}(f_{\Diamond \varphi}(w))$$

- ullet We deal with Σ again by adding the corresponding frame properties as before
- ullet We can then obtain decision procedures based on ordered resolution for all K Σ where 4,5 $ot\in \Sigma$

Background

lelational Translation

Idea 2: Definitional Clause Normal Form

ldea 3: Modal Resolution

Benchma

Conclusions, Future Work,

How well does Idea 2 work?

Background

Relational Translation

ldea 2: Definitional Clause Normal Form

ldea 3: Modal Resolution

Conclusions, Future Work,

How well does Idea 2 work?

- Problem 1: Resolution steps neither respect modal levels nor the distinction between ◊ and □
- Problem 2: Resolution steps are 'too small'

Consider
$$\diamondsuit((p \lor q) \land \diamondsuit(\neg p \lor q)) \land \Box \neg q$$

$$(1) \quad q_1(w_0)$$

$$(2) \quad \neg q_1(V) \vee R(V, f(V))$$

$$(3) \quad \neg q_1(V) \lor q_2(f(V))$$

$$(4) \quad \neg q_2(V) \vee q_3(V)$$

(5)
$$\neg q_2(V) \lor q_4(V)$$

(6)
$$\neg q_3(V) \lor p(V) \lor q(V)$$

(7)
$$\neg q_4(V) \lor R(V, g(V))$$

$$(8) \quad \neg q_4(V) \lor q_5(g(V))$$

$$(9) \quad \neg q_5(V) \vee \neg p(V) \vee q(V)$$

$$(10) \quad \neg q_1(V) \vee \neg R(V, W) \vee q_6(W)$$

(11)
$$\neg q_6(V) \lor \neg q(V)$$

[R,(6)2,(9)2] (12)
$$\neg q_3(V) \lor \neg q_5(V) \lor q(V)$$

$$[R,(13)3,(14)3]$$
 (15) $\neg q_1(V) \lor \neg q_4(V)$

$$\forall q_1(V) \land q_4(V) \\ \lor \neg q_5(g(V)) \lor \neg p(g(V))$$

[R,(8)2,(15)3] (16)
$$\neg q_1(V) \lor \neg q_4(V) \lor \neg p(g(V))$$

:

Background

Relational Franslation

ldea 2: Definitional Clause Normal Form

> ea 3: odal esolution

> enchmarks onclusions, uture ⁄ork,

Modal Resolution for the Modal Cube

- ullet Idea 3: Use a modal clausal normal form and modal resolution calculus To deal with axioms in Σ , add instances of the axioms
- Recall that every K-satisfiable formula has a rooted tree Kripke model where every world w has a unique modal level, $ml_M(w)$ given by the distance of w to the root
- Separated Normal Form with Sets of Modal Levels SNF_{sml}
 - Literal clause $S: \bigvee_{i=1}^k I_i \quad \forall w. \text{ if } \mathsf{ml}_M(w) \in S \text{ then } M, w \models \bigvee_{i=1}^k I_i$
 - $\bullet \ \, \text{Positive modal clause} \qquad \quad \, S:I'\to \Box I \qquad \qquad \forall w.\, \text{if } \mathsf{ml}_M(w)\in S \,\, \text{then} \,\, M,\, w\models I'\to \Box I$
 - Negative modal clause $S: I' \to \Diamond I$ $\forall w. \text{ if } \mathsf{ml}_M(w) \in S \text{ then } M, w \models I' \to \Diamond I$ where $S \subseteq \mathbb{N}$ (possibly infinite)

• Disjunctions here are sets of literals (not multi-sets)

Only $0:\bot$, where \bot is the empty disjunction of literals, is a clause that is K-unsatisfiable on its own

Background

Relational Translation

Definitional Clause Normal Form

ldea 3: Modal Resolution

Benchma

Conclusions Future Work, Questions

Normal Form Transformation and Axioms

• The transformation to normal form ρ_L starts with

$$\{ \{0\} : t_{\varphi}, \{0\} : t_{\varphi} \to \varphi \}$$

and uses a new propositional symbol (surrogate) $\eta(\psi)=t_{\psi}$ for (almost) every subformula ψ of ϕ

KD ($\Box \psi \rightarrow \Diamond \psi$):

$$\Phi \cup \{S: t_{\Box \psi} \to \Box \eta(\psi)\} \quad \Longrightarrow \quad \Phi \cup \{S: t_{\Box \psi} \to \Box \eta(\psi), S: t_{\Box \psi} \to \Diamond \eta(\psi), S^{\geqslant}: \eta(\psi) \to \psi\}$$

KT (
$$\Box \psi \rightarrow \psi$$
):

$$\Phi \cup \{S: t_{\Box \psi} \to \Box \eta(\psi)\} \quad \Longrightarrow \quad \Phi \cup \{S: t_{\Box \psi} \to \Box \eta(\psi), S: \neg t_{\Box \psi} \vee \eta(\psi)S \cup S^+: \eta(\psi) \to \psi\}$$

K4 ($\Box \psi \rightarrow \Box \Box \psi$):

$$\Phi \cup \{S: t_{\Box \psi} \to \Box \eta(\psi)\} \quad \Longrightarrow \quad \Phi \cup \{S^{\geqslant}: t_{\Box \psi} \to \Box \eta(\psi), S^{\geqslant}: t_{\Box \psi} \to \Box t_{\Box \psi}, (S^{+})^{\geqslant}: \eta(\psi) \to \psi\}$$

where
$$S^+ = \{I + 1 \in \mathbb{N} \mid I \in S\}$$
, $S^{\geqslant} = \{n \mid n \geqslant \min(S)\}$,

Background

dea 1. Relational Franslation

Definitional Clause Normal Form

ldea 3: Modal Resolution

> Conclusions, uture

Normal Form Transformation and Axioms

Theorem

Let L be a logic in the modal cube,

φ be a modal formula and

 $\Phi = \rho_L(\phi)$ be the normal form of ϕ for L.

Then ϕ is L-satisfiable iff Φ is K-satisfiable

Background

Relational Franslation

ea 2: efinitional

ause ormal Form

ldea 3: Modal Resolution

enchmar

nclusions, ture

$$\mathsf{LRES}: \frac{S_0: \quad D \lor I}{S_0: \quad D' \lor \neg I} \\ \mathsf{LRES}: \frac{S_1: \quad D' \lor \neg I}{S_0 \cap S_1: D \lor D'} \\ \mathsf{MRES}: \frac{S_1: \quad I_2 \to \Diamond \neg I}{S_0 \cap S_1: \neg I_1 \lor \neg I_2}$$

MRES:
$$\frac{S_0: \quad I_1 \rightarrow \Box I}{S_1: \quad I_2 \rightarrow \Diamond \neg I} \\ \frac{S_1: \quad I_2 \rightarrow \Diamond \neg I}{S_0 \cap S_1: \neg I_1 \vee \neg I_2}$$

$$S_0: \quad I_1' \rightarrow \Box I_1$$

$$S_1: \quad I_2' \rightarrow \Box \neg I_1$$

$$S_2: \quad I_3' \rightarrow \Diamond I_2$$

$$\bigcap \{S_0, S_1, S_2\}: \neg I_1' \vee \neg I_2' \vee \neg I_3'$$

$$S_0: \quad I'_1 \rightarrow \Box \neg I_1$$

$$\vdots$$

$$S_{m-1}: \quad I'_m \rightarrow \Box \neg I_m$$

$$S_m: \quad I' \rightarrow \Diamond \neg I$$

$$S_{m+1}: \quad I_1 \vee \cdots \vee I_m \vee I$$

$$S: \quad \neg I'_1 \vee \cdots \vee \neg I'_m \vee \neg I'$$

$$S = \bigcap \{S_0, \dots, S_m, S_{m+1}^-\}$$
 in GEN1 and GEN3
 $S_{m+1}^- = \{ml - 1 \in \mathbb{N} \mid ml \in S_{m+1}\}$

and inference steps are only performed if the labelling set in the resolvent is non-empty

Idea 3: Modal Resolution

Tautology:

 $S: p \vee \neg p \vee C$ is a tautology

• Subsumption:

 $S_0: C$ subsumes $S_1: C \vee D$ where $S_1\subseteq S_0$ and D is a possibly empty disjunction of literals

- Derivation from Φ:
 - $\Phi = \Phi_0, \Phi_1, \ldots$, where for each i > 0,
 - (i) $\Phi_{i+1} = \Phi_i \cup \{ml : C\}$ where ml : C is derived from clauses in Φ_i , not a tautology,

not a tautology,

and not subsumed by a clause in Φ_i ; or

- (ii) $\Phi_{i+1} = \Phi_i \{ml : C\}$ where ml : C is subsumed by a clause in $\Phi_i \{ml : C\}$
- Refutation of Φ:

A derivation $\Phi = \Phi_0, \Phi_1, \dots, \Phi_n$ where Φ_n contains $S : \bot$ with $0 \in S$

Φ is saturated:

no clause can be derived from Φ that is not a tautology or subsumed by a clause in Φ

Introduction Background

Relational Franslation

Definitional Clause Normal Form

ldea 3: Modal Resolution

. .

onclusions uture Vork, Questions

- Efficiency of the calculus can be improved by restricting the applicability of the LRES ('propositional' binary resolution) rule
 - Negative resolution: One of the premises contains only negative literals
 Additional restrictions on normal form:
 Only positive literals in modal clauses ~ SNF⁻_{end}
 - Positive resolution: One of the premises contains only positive literals
 Additional restrictions on normal form:
 Only negative literals in modal clauses → SNF⁺_{sml}
 - Ordered resolution: For premises $C \vee I$ and $D \vee \neg I$, I must be maximal wrt to C and $\neg I$ must be maximal wrt to D

Additional restrictions on normal form and ordering:

Below modal operators we must have fresh propositional symbols that are smaller than the original propositional symbols \rightarrow SNF^{++}_{sml}

• The additional restrictions on the normal form can be enforced by additional renamings

Introduction Background

dea 1: Relational Franslation

Definitional Clause Normal Form

ldea 3: Modal Resolution

Conclusions -uture

Future Work, Questions

Let

- L be a logic in the modal cube
- φ be a modal formula
- Φ be the corresponding finite set of clauses in SNF_{sml} , SNF_{sml}^- , SNF_{sml}^+ , or SNF_{sml}^{++}
- Φ' be the saturation of Φ with respect to the corresponding refinement of the calculus for $\mathsf{SNF}_\mathit{sml}$

Theorem

 ϕ is L-unsatisfiable iff Φ has a refutation with respect to the corresponding refinement of the calculus

Theorem

If ϕ is L-satisfiable then Φ and Φ' are K-satisfiable and from the tree model M of Φ' we can construct an L-model of ϕ

Background

dea 1: Relational Franslation

lause Iormal Form

ldea 3: Modal Resolution

enchmark

onclusions, uture Vork, Juestions

- We do not have an implementation of the calculus for SNF_{sml}
- Instead there are two implementations of related calculi
 - 1. Global Modal Resolution (GMR) calculus:
 - Overapproximates every clause $S:\psi$ by $\mathbb{N}:\psi$, except for $\{0\}:t_{\varphi}$
 - Generates instances of axioms 'on-the-fly' by additional inference rules
 - 2. Modal-layered Resolution (MLR) calculus:
 - Allows only singleton labelling sets $\{ml\}$: $\psi = ml$: ψ
 - Approximate $S: \psi$ by $ml_1: \psi, \ldots, ml_k: \psi$ where $ml_i \in S$, $ml_i \leqslant b_{\omega}^L$, b_{ω}^L is a logic- and formula-dependend bound

Introduction

Idea 1: Relational Translation

Definitional Clause Normal Form

ldea 3: Modal Resolution

tenchmark

Benchm

onclusions Iture ork, Jestions

Empirical Evalution: Benchmarks

- As satisfiable benchmark formulae we use 100 S5-satisfiable formulae
 - → satisfiable in any logic of the modal cube
 - → effort to find a model varies depending on logic
- As unsatisfiable benchmark formulae we use 100 K-unsatisfiable formulae that are modified for each logic so that logic specific reasoning is required
 → effort to find a refutation varies depending on logic

Background

ldea 1: Relational Translation

dea 2: Definitional Clause

ea 3: odal esolution

esolution

Benchmarks

nclusions, ture ork, lestions

Empirical Evaluation: Benchmarks (CADE 2021)

S5-Satisfiable	K-Unsatisfiable
k_poly_n	k_branch_p
s4_md_n	k_path_p
s4_ph_n	k_ph_p
s4_path_n	k_poly_p
s4_s5_n	k_t4p_p

20 formulae in each family (100 for each logic)

K-Unsatisfiable formulae Replace each propositional variable p by $p \vee \psi_I^p$:

Logic <i>L</i>	$ \psi_L^{\rho} $
K	false
KB	$(\neg q_p \land \Diamond \Box q_p)$
KDB	$(\neg q_p \land \Diamond \Box ((\Box \neg q_p' \land \Box q_p') \lor q_p))$
KTB	$(\neg q_p \land \Diamond \Box ((\neg q_p' \land \Box q_p') \lor q_p))$
KD	$(\Box \neg q_p \wedge \Box q_p)$
KT	$(\neg q_p \wedge \Box q_p)$
K4	$(\Box q_p \land \Diamond \Diamond \neg q_p)$
K4B	$(\neg q_p \land \Diamond \Diamond \Box q_p)$
KD4	$(\Box q_p \land \Diamond \Diamond \Box \Diamond \neg q_p)$
K5	$(\Diamond \neg q_p \wedge \Diamond \Box q_p)$
KD5	$((\Box \neg q_p \wedge \Box q_p) \vee (\Diamond \Box q'_p \wedge \Diamond \neg q'_p)$
K45	$(\Box q_p \land \Diamond \Box q_p' \land \Diamond \Diamond (\neg q_p \lor \neg q_p'))$
KD45	$((\Box \neg q_p' \wedge \Box q_p') \wedge$
	$(\Box q_p \land \Diamond \Box q_p' \land \Diamond \Diamond (\neg q_p \lor \neg q_p'))$
S4	$(\neg q_p' \wedge \Box (\neg q_p' \vee \Box q_p) \wedge \Diamond \Diamond \neg q_p)$
S5	$((\neg q_p \land \Box q_p) \lor (\neg q'_p \land \Diamond \Diamond \Diamond \Box q'_p)$

Background

dea 1: Relational Translation

Definitional Clause Normal Forn

Modal Resolution

Benchmarks

onclusions, uture ⁄ork, uestions

Empirical Evaluation: Benchmarks (DT 2025)

• Provers started to implement modal logic specific simplifications, e.g.,

$$K4: \Diamond \Diamond \psi \Longrightarrow \Diamond \psi$$

 \rightarrow allows such provers to undo the replacement of p by $p \lor \psi_L^p$

• The following alternative modifications mostly disable those modal logic specific simplifications

Logic L	ψ_I^P
K	false
KB	$((\neg q_{\scriptscriptstyle D}^0 \lor \neg q_{\scriptscriptstyle D}^1) \land \Diamond \Box q_{\scriptscriptstyle D}^0 \land \Diamond \Box q_{\scriptscriptstyle D}^1)$
KDB	$((\Box(\neg q^0_p \land \neg q^1_p) \land \Box(q^0_p \lor q^1_p))$
	$\vee ((\neg q_p^0 \vee \neg q_p^1) \wedge \Diamond \Box q_p^0 \wedge \Diamond \Box q_p^1))$
K4	$(\Box(q_p^0\lor q_p^1)\land \diamondsuit\diamondsuit(\neg q_p^0\land \neg q_p^1))$
K5	$(\Diamond \neg q_p^0 \land \Diamond \Box q_p^0)$
KB4	$((q_p^0 \lor \neg q_p^1) \land \Diamond (q_p^2 \land \Diamond \Box q_p^0)$
	$\wedge \diamond (\neg q_p^2 \wedge \diamond \Box q_p^1))$
K45	$(\Box q_p^0 \land \Diamond \Box q_p^1 \land \Diamond \neg q_p^2)$
	$\wedge \diamond (q_p^2 \wedge \diamond (\neg q_p^0 \vee \neg q_p^1)))$
KD	$(\Box(\neg q_p^0 \land \neg q_p^1) \land \Box(q_p^0 \lor q_p^1))$
KT	$(\neg q_p^0 \land \neg q_p^1 \land \Box (q_p^0 \lor q_p^1))$

Logic L	Ψ_I^p
KTB	$((\lnot q^0_p \land \lnot q^1_p \land \Box (q^0_p \lor q^1_p))$
	$\vee ((\neg q_p^0 \vee \neg q_p^1) \wedge \Diamond \Box q_p^0 \wedge \Diamond \Box q_p^1))$
KD4	$((\Box(\lnot q_p^0 \land \lnot q_p^1) \land \Box(q_p^0 \lor q_p^1))$
	$\vee \left(\Box \left(q_p^0 \vee q_p^1\right) \wedge \Diamond \Diamond \left(\neg q_p^0 \wedge \neg q_p^1\right)\right)\right)$
S4	$(q_p^0 \wedge \Box (\neg q_p^0 \vee \Box q_p^1) \wedge \Diamond (q_p^2 \wedge \Diamond (\neg q_p^1 \wedge \neg q_p^2)))$
KD5	$((\Box(\lnot q^0_{_{P}} \land \lnot q^1_{_{P}}) \land \Box(q^0_{_{P}} \lor q^1_{_{P}}))$
	$\vee \left(\lozenge \neg q_p^0 \wedge \lozenge (q_p^0 \wedge \Box q_p^0) \right) \right)$
S5	$((\lnot q^0_p \land \lnot q^1_p \land \Box (q^0_p \lor q^1_p))$
	$\vee (\neg q_p^1 \wedge \Diamond ((q_p^2 \wedge \neg q_p^3) \wedge \Diamond ((q_p^3 \wedge \neg q_p^4) \wedge \Diamond (q_p^4 \wedge \Box q_p^1)))))$
KD45	$((\Box(\lnot q^0_p \land \lnot q^1_p) \land \Box(q^0_p \lor q^1_p))$
	$\vee (\Box q_p^0 \land \Diamond (q_p^0 \land \Box q_p^1) \land \Diamond \neg q_p^2 \land \Diamond (q_p^2 \land \Diamond (\neg q_p^0 \lor \neg q_p^1))))$

troduction

dea 1: Relational Franslation

dea 2: Definitional Clause

> a 3: odal solution

Benchmarks

nclusions, ture ork, estions

How well does Idea 3 work?

Background

Relational Translation

Idea 2: Definitional Clause

Resolution

Benchmarks

Conclusions, Future Work, Questions

Conclusions, Future Work, Questions

- Global Modal Resolution currently offers the best overall performance on the logics of the modal cube
- The normal form used for Global Modal Resolution is closely related to the definitional clause normal form which performed worse
- The performance gain is therefore most likely linked to
 - the hyperresolution-like inference rules of Global Modal Resolution
 - the use of on-the-fly generated instances of axioms instead of relational frame properties

Future work: Extend the comparison to include the axiomatic translation from modal to first-order logic to disentangle these factors

Introduction

Relational Translatior

ldea 2: Definitional Clause

> lea 3: lodal esolution

> enchmarks

Conclusions, Future Work, Questions

- Our modal resolution approach offers a number of advantages:
 - provides decision procedures for all 15 logics of the modal cube
 - provides proofs
 - provides models (implemented only for the ordered refinement)
- But there are faster provers for specific logics
- In particular, the fastest prover for the six logics K, KB, KD, KT, K4, K5 offers neither proofs nor models
- We have also seen that the relational translation without the use of definitional clause normal form can result in better performance though it does not provide a decision procedure
- Question: What criteria should we use for the inclusion or exclusion of an approach / prover in a comparison?