<u>Carsten Fuhs</u>¹ Liye Guo² Cynthia Kop²

¹ Birkbeck, University of London

² Radboud University Nijmegen

Deduktionstreffen 2025 Stuttgart, Germany 1 August 2025

Proving program termination:

Proving program termination:

Many translations in the literature

- Prolog [van Raamsdonk, ICLP '97], [Giesl et al, PPDP '12]
- Java [Otto et al, RTA '10]
- Haskell [Giesl et al, TOPLAS '11]
- LLVM [Ströder et al, JAR '17]
- C [Fuhs, Kop, Nishida, TOCL '17]
- Jinja [Moser, Schaper, IC '18]
- Scala [Milovančević, Fuhs, Kunčak, WPTE '25]
- . . .

Proving program termination:

Proving program termination:

- Term Rewriting Systems: TRSs
- Integer Transition Systems: ITSs
- combinations and extensions: constrained rewriting

Proving program termination:

- Term Rewriting Systems: TRSs
- Integer Transition Systems: ITSs
- combinations and extensions: constrained rewriting

Proving program termination:

- Term Rewriting Systems: TRSs
- Integer Transition Systems: ITSs
- combinations and extensions: constrained rewriting

Proving program termination:

- Term Rewriting Systems: TRSs
- Integer Transition Systems: ITSs
- combinations and extensions: constrained rewriting

Ideal intermediate representation should

- be good for automated reasoning (no "lost in encoding")
- express language features directly

Ideal intermediate representation should

- be good for automated reasoning (no "lost in encoding")
- express language features directly

What is available?

Ideal intermediate representation should

- be good for automated reasoning (no "lost in encoding")
- express language features directly

What is available?

• Term Rewriting Systems aka TRSs: functions on algebraic data structures

Ideal intermediate representation should

- be good for automated reasoning (no "lost in encoding")
- express language features directly

```
\begin{array}{c|c} \mathsf{length} \ \mathsf{nil} \to \mathsf{zero} \\ \mathsf{plus} \ x \ \mathsf{zero} \to x \end{array} \begin{array}{c|c} \mathsf{length} \ (\mathsf{cons} \ x \ xs) \to \mathsf{s} \ (\mathsf{length} \ xs) \\ \mathsf{plus} \ x \ (\mathsf{s} \ y) \to \mathsf{s} \ (\mathsf{plus} \ x \ y) \end{array}
```

What is available?

- Term Rewriting Systems aka TRSs: functions on algebraic data structures
- Integer Transition Systems aka ITSs: functions/statements on integer data + arithmetic

Ideal intermediate representation should

- be good for automated reasoning (no "lost in encoding")
- express language features directly

```
\begin{array}{c|c} \mathsf{length} \ \mathsf{nil} \to \mathsf{zero} \\ \mathsf{plus} \ x \ \mathsf{zero} \to x \end{array} \begin{array}{c|c} \mathsf{length} \ (\mathsf{cons} \ x \ xs) \to \mathsf{s} \ (\mathsf{length} \ xs) \\ \mathsf{plus} \ x \ (\mathsf{s} \ y) \to \mathsf{s} \ (\mathsf{plus} \ x \ y) \end{array}
```

What is available?

- Term Rewriting Systems aka TRSs: functions on algebraic data structures
- Integer Transition Systems aka ITSs: functions/statements on integer data + arithmetic

Logically Constrained TRSs aka LCTRSs [Kop, Nishida, FroCoS '13]:
 TRSs + ITSs + arbitrary logical theories (arrays, bitvectors, ...)

Ideal intermediate representation should

- be good for automated reasoning (no "lost in encoding")
- express language features directly

 $\begin{array}{c} \mathsf{length} \ \mathsf{nil} \to \mathsf{zero} \\ \mathsf{plus} \ x \ \mathsf{zero} \to x \end{array}$

 $\begin{array}{c|c} | \textbf{length} \ (\textbf{cons} \ x \ xs) \rightarrow \textbf{s} \ (\textbf{length} \ xs) \\ & \textbf{plus} \ x \ (\textbf{s} \ y) \rightarrow \textbf{s} \ (\textbf{plus} \ x \ y) \end{array}$

- What is available?
 - Term Rewriting Systems aka TRSs: functions on algebraic data structures
 - Integer Transition Systems aka ITSs: functions/statements on integer data + arithmetic

- Logically Constrained TRSs aka LCTRSs [Kop, Nishida, *FroCoS '13*]: TRSs + ITSs + arbitrary logical theories (arrays, bitvectors, . . .)
- Logically Constrained Simply-typed TRSs aka LCSTRSs [Guo, Kop, ESOP '24]: LCTRSs + higher-order functions (but no λ)

Evaluating with an LCSTRS

```
 \begin{array}{c} \operatorname{fact} \ 0 \to 1 \\ \operatorname{fact} \ x \to x * \operatorname{fact} \ (x-1) \left[ x > 0 \right] \\ \operatorname{g} \ x \to \operatorname{g} \ (\operatorname{fact} \ -1) \end{array}
```

Evaluating with an LCSTRS

Cbv rewriting

Proper subterms of redex:

ground values

g (fact 1)
$$\stackrel{\text{v}}{\rightarrow}$$
 g (1 * fact 0)
 $\stackrel{\text{v}}{\rightarrow}$ g $\underbrace{(1*1)}_{\stackrel{\text{v}}{\rightarrow}}$ g $\underbrace{1}_{\stackrel{\text{v}}{\rightarrow}}$ g 1

Evaluating with an LCSTRS

Cbv rewriting

Proper subterms of redex: ground values

$$\begin{array}{c} \mathbf{g} \ \underline{\left(\mathsf{fact} \ 1 \right)} & \stackrel{\mathbf{v}}{\rightarrow} \mathbf{g} \ (1 * \underline{\mathsf{fact} \ 0}) \\ \stackrel{\mathbf{v}}{\rightarrow} \mathbf{g} \ \underline{\left(1 * 1 \right)} & \stackrel{\mathbf{v}}{\rightarrow} \underline{\mathsf{g}} \ 1 \\ \stackrel{\mathbf{v}}{\rightarrow} \mathbf{g} \ (\mathsf{fact} \ -1) \not\overset{\mathbf{v}}{\rightarrow} \end{array}$$

- Cbv: used in programming languages
- Want to prove termination of cbv rewriting!

Evaluating with an LCSTRS

$$\begin{array}{c} \operatorname{fact} \ 0 \to 1 \\ \operatorname{fact} \ x \to x * \operatorname{fact} \ (x-1) \ [x > 0] \\ \operatorname{g} \ x \to \operatorname{g} \ (\operatorname{fact} \ -1) \end{array}$$

Cbv rewriting

Proper subterms of redex: ground values

$$\begin{array}{c} \mathbf{g} \ \underbrace{(\mathsf{fact} \ 1)}_{\overset{\mathsf{v}}{\to}} \mathbf{g} \ (1 * \underbrace{\mathsf{fact} \ 0}) \\ \overset{\mathsf{v}}{\to} \mathbf{g} \ \underbrace{(1 * 1)}_{\overset{\mathsf{v}}{\to}} \mathbf{g} \ 1 \\ \overset{\mathsf{v}}{\to} \mathbf{g} \ (\mathsf{fact} \ -1) \not\xrightarrow{\overset{\mathsf{v}}{\to}} \end{array}$$

- Cbv: used in programming languages
- Want to prove termination of cbv rewriting!
- Literature on termination: focus on innermost rewriting

Evaluating with an LCSTRS

$$\begin{array}{c} \operatorname{fact} \ 0 \to 1 \\ \operatorname{fact} \ x \to x * \operatorname{fact} \ (x-1) \left[x > 0 \right] \\ \operatorname{g} \ x \to \operatorname{g} \ (\operatorname{fact} \ -1) \end{array}$$

Cbv rewriting

Proper subterms of redex: ground values

$$\begin{array}{c} \mathbf{g} \ \underline{\left(\mathsf{fact} \ 1 \right)} & \stackrel{\mathbf{v}}{\rightarrow} \mathbf{g} \ (1 * \underline{\mathsf{fact} \ 0}) \\ \stackrel{\mathbf{v}}{\rightarrow} \mathbf{g} \ \underline{\left(1 * 1 \right)} & \stackrel{\mathbf{v}}{\rightarrow} \underline{\mathbf{g}} \ 1 \\ \stackrel{\mathbf{v}}{\rightarrow} \mathbf{g} \ \underline{\left(\mathsf{fact} \ -1 \right)} \stackrel{\mathbf{v}}{\not\rightarrow} \end{array}$$

Innermost rewriting

Proper subterms of redex: normal forms

$$\begin{array}{ccc} g & \underline{(\text{fact } 1)} & \stackrel{\text{i}}{\to} g & (1 * \underline{\text{fact } 0}) \\ \stackrel{\text{i}}{\to} g & \underline{(1 * 1)} & \stackrel{\text{i}}{\to} \underline{g} & \underline{1} \\ \stackrel{\text{i}}{\to} \underline{g} & \underline{(\text{fact } -1)} & \stackrel{\text{i}}{\to} \underline{g} & (\text{fact } -1) \\ \stackrel{\text{i}}{\to} \dots & & \end{array}$$

- Cbv: used in programming languages
- Want to prove termination of cbv rewriting!
- Literature on termination: focus on innermost rewriting

Evaluating with an LCSTRS

$$\begin{array}{c} \operatorname{fact} \ 0 \to 1 \\ \operatorname{fact} \ x \to x * \operatorname{fact} \ (x-1) \left[x > 0 \right] \\ \operatorname{g} \ x \to \operatorname{g} \ (\operatorname{fact} \ -1) \end{array}$$

Cbv rewriting

Proper subterms of redex: ground values

$$\begin{array}{c} \mathbf{g} \ \underline{\left(\mathsf{fact} \ 1 \right)} & \stackrel{\mathbf{v}}{\to} \mathbf{g} \ (1 * \underline{\mathsf{fact} \ 0}) \\ \stackrel{\mathbf{v}}{\to} \mathbf{g} \ \underline{\left(1 * 1 \right)} & \stackrel{\mathbf{v}}{\to} \underline{\mathbf{g}} \ 1 \\ \stackrel{\mathbf{v}}{\to} \mathbf{g} \ (\overline{\mathsf{fact}} \ -1) \not\xrightarrow{\mathbf{y}} \end{array}$$

Innermost rewriting

Proper subterms of redex: normal forms

$$\begin{array}{ccc} \mathbf{g} & \underbrace{(\mathsf{fact} \ 1)} & \stackrel{\mathrm{i}}{\to} \mathbf{g} & (1 * \underbrace{\mathsf{fact} \ 0}) \\ \stackrel{\mathrm{i}}{\to} \mathbf{g} & \underbrace{(1 * 1)} & \stackrel{\mathrm{i}}{\to} \underbrace{\mathsf{g} \ 1} \\ \stackrel{\mathrm{i}}{\to} \underbrace{\mathsf{g} \ (\mathsf{fact} \ -1)} & \stackrel{\mathrm{i}}{\to} \underbrace{\mathsf{g} \ (\mathsf{fact} \ -1)} \\ \stackrel{\mathrm{i}}{\to} \dots \end{array}$$

- Cbv: used in programming languages
- Want to prove termination of cbv rewriting!
- Literature on termination: focus on innermost rewriting
- Solution [Fuhs, Guo, Kop, FSCD '25]: mention x : int in constraint $\Rightarrow x$ must be value!
- int is inextensible theory sort

Evaluating with an LCSTRS

$$\begin{aligned} & \text{fact } 0 \to 1 \\ & \text{fact } x \to x * \text{fact } (x-1) \left[x > 0 \right] \\ & \text{g } x \to \text{g (fact } -1) \end{aligned}$$

Cbv rewriting

Proper subterms of redex: ground values

$$\begin{array}{c} \mathbf{g} \ \underline{\left(\mathsf{fact} \ 1 \right)} & \stackrel{\mathbf{v}}{\rightarrow} \mathbf{g} \ (1 * \underline{\mathsf{fact} \ 0}) \\ \stackrel{\mathbf{v}}{\rightarrow} \mathbf{g} \ \underline{\left(1 * 1 \right)} & \stackrel{\mathbf{v}}{\rightarrow} \underline{\mathbf{g}} \ 1 \\ \stackrel{\mathbf{v}}{\rightarrow} \mathbf{g} \ (\overline{\mathsf{fact}} \ -1) \not\xrightarrow{\mathbf{y}} \end{array}$$

Innermost rewriting

Proper subterms of redex: normal forms

$$g \underbrace{(\mathsf{fact} \ 1)}_{\overset{i}{\to}} g \underbrace{(1 * \underbrace{\mathsf{fact} \ 0})}_{\overset{i}{\to}} g \underbrace{(1 * 1)}_{\overset{i}{\to}} \underbrace{g \ 1}_{\overset{i}{\to}} \underbrace{g \ (\mathsf{fact} \ -1)}_{\overset{i}{\to}} \underbrace{g \ (\mathsf{fact} \ -1)}_{\overset{i}{\to}} \underbrace{g \ (\mathsf{fact} \ -1)}_{\overset{i}{\to}}$$

- Cbv: used in programming languages
- Want to prove termination of cbv rewriting!
- Literature on termination: focus on innermost rewriting
- Solution [Fuhs, Guo, Kop, FSCD '25]: mention x : int in constraint $\Rightarrow x$ must be value!
- int is inextensible theory sort

$$\begin{aligned} & \text{fact } 0 \to 1 \\ & \text{fact } x \to x * \text{fact } (x-1) \left[x > 0 \right] \\ & \text{g } x \to \text{g } \left(\text{fact } -1 \right) \quad \left[x \equiv x \right] \end{aligned}$$

Evaluating with an LCSTRS

$$\begin{array}{c} \operatorname{fact} \ 0 \to 1 \\ \operatorname{fact} \ x \to x * \operatorname{fact} \ (x-1) \left[x > 0 \right] \\ \operatorname{g} \ x \to \operatorname{g} \ (\operatorname{fact} \ -1) \end{array}$$

Cbv rewriting

Proper subterms of redex: ground values

$$\begin{array}{c} \mathbf{g} \ \underline{\left(\mathsf{fact} \ 1 \right)} & \stackrel{\mathbf{v}}{\to} \mathbf{g} \ (1 * \underline{\mathsf{fact} \ 0}) \\ \stackrel{\mathbf{v}}{\to} \mathbf{g} \ \underline{\left(1 * 1 \right)} & \stackrel{\mathbf{v}}{\to} \underline{\mathsf{g}} \ 1 \\ \stackrel{\mathbf{v}}{\to} \mathbf{g} \ (\overline{\mathsf{fact}} \ -1) \not\xrightarrow{y} \end{array}$$

Innermost rewriting

Proper subterms of redex: normal forms

$$\begin{array}{c} \mathbf{g} \ \underline{(\mathsf{fact} \ 1)} & \stackrel{\mathbf{i}}{\rightarrow} \mathbf{g} \ (1 * \underbrace{\mathsf{fact} \ 0}) \\ \stackrel{\mathbf{i}}{\rightarrow} \mathbf{g} \ \underline{(1 * 1)} & \stackrel{\mathbf{i}}{\rightarrow} \mathbf{g} \ 1 \\ \stackrel{\mathbf{i}}{\rightarrow} \mathbf{g} \ (\mathsf{fact} \ -1) & \stackrel{\mathbf{i}}{\rightarrow} \mathbf{g} \ (\mathsf{fact} \ -1) \\ \stackrel{\mathbf{i}}{\rightarrow} \dots & \end{array}$$

- Cbv: used in programming languages
- Want to prove termination of cbv rewriting!
- Literature on termination: focus on innermost rewriting
- Solution [Fuhs, Guo, Kop, FSCD '25]: mention x : int in constraint $\Rightarrow x$ must be value!
- int is inextensible theory sort

 $\Rightarrow {\sf Terminates \ also \ for \ innermost \ rewriting!}$

Prove termination by Static Dependency Pairs for LCSTRSs [Guo, Hagens, Kop, Vale, *MFCS '24*]

• For LCSTRS \mathcal{R} build dependency pairs $\mathcal{P} = \text{SDP}(\mathcal{R}_{gcd})$ (\sim function calls)

Prove termination by Static Dependency Pairs for LCSTRSs [Guo, Hagens, Kop, Vale, MFCS '24]

- $\bullet \ \, \text{For LCSTRS} \,\, \mathcal{R} \,\, \text{build dependency pairs} \,\, \mathcal{P} = \text{SDP}(\mathcal{R}_{\text{gcd}}) \qquad \qquad (\sim \, \text{function calls})$
- Show: No ∞ call sequence with \mathcal{P} (eval of \mathcal{P} 's args via \mathcal{R})

 $\gcd m \ 0 \to m \qquad [m > 0]$

```
\mathcal{R}_{\mathsf{gcd}} \mathsf{gcdlist} \to \mathsf{fold} \; \mathsf{gcd} \; 0 \mathsf{fold} \; f \; y \; \mathsf{nil} \to y \quad [y \equiv y] \quad | \quad \mathsf{fold} \; f \; y \; (\mathsf{cons} \; x \; l) \to f \; x \; (\mathsf{fold} \; f \; y \; l) \quad [x \equiv x \land y \equiv y] \mathsf{gcd} \; m \; n \to \mathsf{gcd} \; (-m) \; n \, [m < 0 \land n \equiv n] \quad | \quad \mathsf{gcd} \; m \; n \to \mathsf{gcd} \; m \; (-n) \qquad [n < 0 \land m \equiv m]
```

Prove termination by Static Dependency Pairs for LCSTRSs [Guo, Hagens, Kop, Vale, MFCS '24]

• For LCSTRS $\mathcal R$ build dependency pairs $\mathcal P = \mathsf{SDP}(\mathcal R_\mathsf{gcd})$ (\sim function calls)

 $\operatorname{\mathsf{gcd}} m \ n \to \operatorname{\mathsf{gcd}} n \ (m \bmod n) \ [m > 0 \land n > 0]$

• Show: No ∞ call sequence with $\mathcal P$ (eval of $\mathcal P$'s args via $\mathcal R$)

$\mathsf{SDP}(\mathcal{R}_{\mathsf{gcd}})$

Dependency Pair Framework

- ullet Works on DP problems $(\mathcal{P},\mathcal{R})$
- DP framework:

```
\begin{split} S &:= \{(\mathsf{SDP}(\mathcal{R}), \mathcal{R})\} \\ \text{while } S &= S' \uplus \{(\mathcal{P}, \mathcal{R})\} \\ S &:= S' \cup \rho(\mathcal{P}, \mathcal{R}) \text{ for a DP processor } \rho \\ \text{print "YES"} \end{split}
```

Dependency Pair Framework

- ullet Works on DP problems $(\mathcal{P},\mathcal{R})$
- DP framework:

```
\begin{split} S &:= \{(\mathsf{SDP}(\mathcal{R}), \mathcal{R})\} \\ \text{while } S &= S' \uplus \{(\mathcal{P}, \mathcal{R})\} \\ S &:= S' \cup \rho(\mathcal{P}, \mathcal{R}) \text{ for a DP processor } \rho \\ \text{print "YES"} \end{split}
```

Existing DP processors for LCSTRSs [Guo, Hagens, Kop, Vale, MFCS '24]

- Graph processor
- Subterm criterion processor
- Integer mapping processor

Dependency Pair Framework

- Works on DP problems $(\mathcal{P}, \mathcal{R})$
- DP framework:

```
\begin{split} S &:= \{(\mathsf{SDP}(\mathcal{R}), \mathcal{R})\} \\ \text{while } S &= S' \uplus \{(\mathcal{P}, \mathcal{R})\} \\ S &:= S' \cup \rho(\mathcal{P}, \mathcal{R}) \text{ for a DP processor } \rho \\ \text{print "YES"} \end{split}
```

Existing DP processors for LCSTRSs [Guo, Hagens, Kop, Vale, MFCS '24]

- Graph processor
- Subterm criterion processor
- Integer mapping processor

New innermost DP processors for LCSTRSs [Fuhs, Guo, Kop, FSCD '25]

- Usable rules processor
- Reduction pair processor with usable rules wrt argument filtering
- Chaining processor

Also for **compositional termination analysis** via universal computability!

Existing DP processors for LCSTRSs

- (1) $\operatorname{gcdlist}^{\sharp} l' \Rightarrow \operatorname{fold}^{\sharp} \operatorname{gcd} 0 l'$
- (2) $\operatorname{gcdlist}^{\sharp} l' \Rightarrow \operatorname{gcd}^{\sharp} m' n'$

- (4) $\gcd^{\sharp} m \ n \Rightarrow \gcd^{\sharp} (-m) \ n \ [m < 0 \land n \equiv n]$
- **(5)** $\operatorname{gcd}^{\sharp} m \ n \Rightarrow \operatorname{gcd}^{\sharp} m \ (-n) \ [n < 0 \land m \equiv m]$

- (1) $\operatorname{gcdlist}^{\sharp} l' \Rightarrow \operatorname{fold}^{\sharp} \operatorname{gcd} 0 l'$
- (2) $\operatorname{gcdlist}^{\sharp} l' \Rightarrow \operatorname{gcd}^{\sharp} m' n'$

- (4) $\gcd^{\sharp} m \ n \Rightarrow \gcd^{\sharp} (-m) \ n \ [m < 0 \land n \equiv n]$ (5) $\gcd^{\sharp} m \ n \Rightarrow \gcd^{\sharp} m \ (-n) \ [n < 0 \land m \equiv m]$

 \mathcal{R}

- (1) $\operatorname{gcdlist}^{\sharp} l' \Rightarrow \operatorname{fold}^{\sharp} \operatorname{gcd} 0 l'$
- (2) $\operatorname{gcdlist}^{\sharp} l' \Rightarrow \operatorname{gcd}^{\sharp} m' n'$
- (4) $\gcd^{\sharp} m \ n \Rightarrow \gcd^{\sharp} (-m) \ n \ [m < 0 \land n \equiv n]$
- (5) $\gcd^{\sharp} m \ n \Rightarrow \gcd^{\sharp} m \ (-n) \ [n < 0 \land m \equiv m]$

 \mathcal{R}

Dependency Graph: which calls may follow one another?

- (1) $\operatorname{gcdlist}^{\sharp} l' \Rightarrow \operatorname{fold}^{\sharp} \operatorname{gcd} 0 l'$
- (2) $gcdlist^{\sharp} l' \Rightarrow gcd^{\sharp} m' n'$

(4) $\gcd^{\sharp} m \ n \Rightarrow \gcd^{\sharp} (-m) \ n \ [m < 0 \land n \equiv n]$ (5) $\gcd^{\sharp} m \ n \Rightarrow \gcd^{\sharp} m \ (-n) \ [n < 0 \land m \equiv m]$

(3) fold f y (cons x l) \Rightarrow fold f y l [$x \equiv x \land y \equiv y$] | (6) $\gcd^{\sharp} m$ $n \Rightarrow \gcd^{\sharp} n$ ($m \mod n$) [$m \ge 0 \land n > 0$]

 \mathcal{R}

. . .

- Dependency Graph: which calls may follow one another?
- Approximation

- (1) $\operatorname{gcdlist}^{\sharp} l' \Rightarrow \operatorname{fold}^{\sharp} \operatorname{gcd} 0 l'$

 \mathcal{R}

- (2) $\operatorname{gcdlist}^{\sharp} l' \Rightarrow \operatorname{gcd}^{\sharp} m' n'$

- (3) fold f f g (cons g g) g fold g g (so g) g fold g (so g) g (so g
- (4) $\gcd^{\sharp} m \ n \Rightarrow \gcd^{\sharp} (-m) \ n \ [m < 0 \land n \equiv n]$
- (5) $\gcd^{\sharp} m \ n \Rightarrow \gcd^{\sharp} m \ (-n) \ [n < 0 \land m \equiv m]$

- Dependency Graph: which calls may follow one another?
- Approximation [Guo, Hagens, Kop, Vale, MFCS '24]:
- (5)(4)(6)

• Graph processor: decompose \mathcal{P} into non-trivial Strongly Connected Components

- (1) $\operatorname{gcdlist}^{\sharp} l' \Rightarrow \operatorname{fold}^{\sharp} \operatorname{gcd} 0 l'$

 \mathcal{R}

- (2) $\operatorname{gcdlist}^{\sharp} l' \Rightarrow \operatorname{gcd}^{\sharp} m' n'$
- (3) fold f y (cons x l) \Rightarrow fold f y l [$x \equiv x \land y \equiv y$] | (6) $\gcd^{\sharp} m$ $n \Rightarrow \gcd^{\sharp} n$ ($m \mod n$) [$m \ge 0 \land n > 0$]

- Dependency Graph: which calls may follow one another?
- Approximation

• Graph processor: decompose \mathcal{P} into non-trivial Strongly Connected Components

(4) $\gcd^{\sharp} m \ n \Rightarrow \gcd^{\sharp} (-m) \ n \ [m < 0 \land n \equiv n]$

(5) $\gcd^{\sharp} m \ n \Rightarrow \gcd^{\sharp} m \ (-n) \ [n < 0 \land m \equiv m]$

Here:

$$(\{(\mathbf{3})\}, \mathcal{R})$$

 $(\{(\mathbf{6})\}, \mathcal{R})$
 $(\{(\mathbf{4}), (\mathbf{5})\}, \mathcal{R})$

_

(3) fold f y (cons x l) \Rightarrow fold f y l $[x \equiv x \land y \equiv y]$

 \mathcal{R}

. . .

 \mathcal{P}

(3) fold f f g (cons g g) g fold g g g g g g g g

 \mathcal{R}

٠.

Subterm criterion processor [Guo, Hagens, Kop, Vale, MFCS '24]

- Detect structural decrease in argument
- Use projection $\nu(\mathsf{fold}^\sharp) = 3$
- Get cons $x \ l > l$
- \Rightarrow Remove (3)
- \Rightarrow (\emptyset, \mathcal{R}) deleted by graph processor

_

(6) $\operatorname{gcd}^{\sharp} m \ n \Rightarrow \operatorname{gcd}^{\sharp} n \ (m \bmod n) \ [m \ge 0 \land n > 0]$

 \mathcal{R}

• • •

$$\mathcal{P}$$

(6)
$$\operatorname{gcd}^{\sharp} m \ n \Rightarrow \operatorname{gcd}^{\sharp} n \ (m \bmod n) \ [m \ge 0 \land n > 0]$$

 \mathcal{R}

• •

Integer mapping processor [Guo, Hagens, Kop, Vale, MFCS '24]

- Detect integer value decrease in argument
- Use projection $\nu(\gcd^{\sharp}) = 2$
- $\begin{array}{lll} \bullet & \mathsf{Get} & m \geq 0 \wedge n > 0 & \models & n > m \bmod n \\ \mathsf{and} & m \geq 0 \wedge n > 0 & \models & n \geq 0 \\ \end{array}$
- \Rightarrow Remove (6)
- \Rightarrow (\emptyset, \mathcal{R}) deleted by graph processor

(6) $\gcd^{\sharp} m \ n \Rightarrow \gcd^{\sharp} n \ (m \bmod n) \ [m \ge 0 \land n > 0]$

 \mathcal{R}

Integer mapping processor [Guo, Hagens, Kop, Vale, MFCS '24]

- Detect integer value decrease in argument
- Use projection $\nu(\gcd^{\sharp}) = 2$
- Get $m \ge 0 \land n > 0 \models n > m \mod n$ and $m \ge 0 \land n > 0 \models n \ge 0$
- \Rightarrow Remove (6)
- \Rightarrow (\emptyset, \mathcal{R}) deleted by graph processor
- $(\{(4), (5)\}, \mathcal{R})$ handled by integer mapping processor + graph processor
- \Rightarrow termination of \mathcal{R}_{gcd} proved!

New DP processors for LCSTRSs

```
\mathcal{R}_{\mathsf{dfoldr}}
```

```
\begin{array}{lll} \operatorname{drop}: \operatorname{int} \to \operatorname{alist} \to \operatorname{alist} \\ \operatorname{dfoldr}: (\operatorname{a} \to \operatorname{b} \to \operatorname{b}) \to \operatorname{b} \to \operatorname{int} \to \operatorname{alist} \to \operatorname{b} \\ \\ \operatorname{drop} n \ l & \to l & [n \leq 0] \\ \operatorname{drop} n \ \operatorname{nil} & \to \operatorname{nil} & [n \equiv n] \\ \operatorname{drop} n \ (\operatorname{cons} x \ l) & \to \operatorname{drop} (n-1) \ l & [n > 0] \\ \\ \operatorname{dfoldr} f \ y \ n \ \operatorname{nil} & \to y & [n \equiv n] \\ \operatorname{dfoldr} f \ y \ n \ (\operatorname{cons} x \ l) & \to f \ x \ (\operatorname{dfoldr} f \ y \ n \ (\operatorname{drop} n \ l)) & [n \equiv n] \\ \end{array}
```

```
\mathcal{R}_{\mathsf{dfoldr}}
```

```
\begin{array}{lll} \operatorname{drop}: \operatorname{int} \to \operatorname{alist} \to \operatorname{alist} \\ \operatorname{dfoldr}: (\operatorname{a} \to \operatorname{b} \to \operatorname{b}) \to \operatorname{b} \to \operatorname{int} \to \operatorname{alist} \to \operatorname{b} \\ \\ \operatorname{drop} n \ l & \to l & [n \leq 0] \\ \operatorname{drop} n \ \operatorname{nil} & \to \operatorname{nil} & [n \equiv n] \\ \operatorname{drop} n \ (\operatorname{cons} x \ l) & \to \operatorname{drop} (n-1) \ l & [n > 0] \\ \\ \operatorname{dfoldr} f \ y \ n \ \operatorname{nil} & \to y & [n \equiv n] \\ \operatorname{dfoldr} f \ y \ n \ (\operatorname{cons} x \ l) & \to f \ x \ (\operatorname{dfoldr} f \ y \ n \ (\operatorname{drop} n \ l)) & [n \equiv n] \\ \end{array}
```

Troublesome DP problem:

```
( \{ \mathsf{dfoldr}^{\sharp} f \ y \ n \ (\mathsf{cons} \ x \ l) \Rightarrow \mathsf{dfoldr}^{\sharp} f \ y \ n \ (\mathsf{drop} \ n \ l) \ [n \equiv n] \ \}, \ \mathcal{R}_{\mathsf{dfoldr}} )
```

```
\mathcal{R}_{\mathsf{dfoldr}}
```

```
\begin{array}{lll} \operatorname{drop}: \operatorname{int} \to \operatorname{alist} \to \operatorname{alist} \\ \operatorname{dfoldr}: (\operatorname{a} \to \operatorname{b} \to \operatorname{b}) \to \operatorname{b} \to \operatorname{int} \to \operatorname{alist} \to \operatorname{b} \\ \\ \operatorname{drop} n \ l & \to l & [n \leq 0] \\ \operatorname{drop} n \ \operatorname{nil} & \to \operatorname{nil} & [n \equiv n] \\ \operatorname{drop} n \ (\operatorname{cons} x \ l) & \to \operatorname{drop} (n-1) \ l & [n > 0] \\ \\ \operatorname{dfoldr} f \ y \ n \ \operatorname{nil} & \to y & [n \equiv n] \\ \operatorname{dfoldr} f \ y \ n \ (\operatorname{cons} x \ l) & \to f \ x \ (\operatorname{dfoldr} f \ y \ n \ (\operatorname{drop} n \ l)) & [n \equiv n] \\ \end{array}
```

Troublesome DP problem:

```
( \{ \mathsf{dfoldr}^{\sharp} f \ y \ n \ (\mathsf{cons} \ x \ l) \Rightarrow \mathsf{dfoldr}^{\sharp} f \ y \ n \ (\mathsf{drop} \ n \ l) \ [n \equiv n] \ \}, \ \mathcal{R}_{\mathsf{dfoldr}} )
```

- Reduction pair processor can show $\cos x \ l \succ \operatorname{drop} n \ l$
- But cannot show dfoldr f y n (cons x l) $\succsim f$ x (dfoldr f y n (drop n l))[$n \equiv n$]

```
\mathcal{R}_{\mathsf{dfoldr}}
```

```
\begin{array}{lll} \operatorname{\sf drop}: \operatorname{\sf int} \to \operatorname{\sf alist} \to \operatorname{\sf alist} \\ \operatorname{\sf dfoldr}: (\operatorname{\sf a} \to \operatorname{\sf b} \to \operatorname{\sf b}) \to \operatorname{\sf b} \to \operatorname{\sf int} \to \operatorname{\sf alist} \to \operatorname{\sf b} \\ \\ \operatorname{\sf drop} n \ l & \to l & [n \le 0] \\ \operatorname{\sf drop} n \ \operatorname{\sf nil} & \to \operatorname{\sf nil} & [n \equiv n] \\ \operatorname{\sf drop} n \ (\operatorname{\sf cons} x \ l) & \to \operatorname{\sf drop} (n-1) \ l & [n > 0] \\ \\ \operatorname{\sf dfoldr} f \ y \ n \ \operatorname{\sf nil} & \to y & [n \equiv n] \\ \operatorname{\sf dfoldr} f \ y \ n \ (\operatorname{\sf cons} x \ l) & \to f \ x \ (\operatorname{\sf dfoldr} f \ y \ n \ (\operatorname{\sf drop} n \ l)) & [n \equiv n] \\ \end{array}
```

Troublesome DP problem:

```
( \{ \mathsf{dfoldr}^{\sharp} f \ y \ n \ (\mathsf{cons} \ x \ l) \Rightarrow \mathsf{dfoldr}^{\sharp} f \ y \ n \ (\mathsf{drop} \ n \ l) \ [n \equiv n] \ \}, \ \mathcal{R}_{\mathsf{dfoldr}} )
```

- Reduction pair processor can show $\cos x \, l \succ \text{drop } n \, l$
- But cannot show dfoldr f y n (cons x l) $\succsim f$ x (dfoldr f y n (drop n l))[$n \equiv n$]
- Usable rules processor: keep only usable rules, called from DPs
- Here: rules for drop

```
\mathcal{R} dr
```

```
 \frac{\mathsf{drop} : \mathsf{int} \to \mathsf{alist} \to \mathsf{alist} }{\mathsf{dfoldr} : (\mathsf{a} \to \mathsf{b} \to \mathsf{b}) \to \mathsf{b} \to \mathsf{int} \to \mathsf{alist} \to \mathsf{b} }
```

```
\begin{array}{lll} \operatorname{drop} n \ l & \to & l & [n \leq 0] \\ \operatorname{drop} n \ \operatorname{nil} & \to & \operatorname{nil} & [n \equiv n] \\ \operatorname{drop} n \ (\operatorname{cons} x \ l) & \to & \operatorname{drop} \ (n-1) \ l & [n > 0] \end{array}
```

• Troublesome DP problem:

$$(\{ \mathsf{dfoldr}^{\sharp} \ f \ y \ n \ (\mathsf{cons} \ x \ l) \Rightarrow \mathsf{dfoldr}^{\sharp} \ f \ y \ n \ (\mathsf{drop} \ n \ l) \ [n \equiv n] \ \}, \ \mathcal{R}_{\mathsf{dfoldr}})$$

- Reduction pair processor can show $\cos x \ l > \operatorname{drop} n \ l$
- But cannot show dfoldr f y n (cons x l) $\succsim f$ x (dfoldr f y n (drop n l))[$n \equiv n$]
- Usable rules processor: keep only usable rules, called from DPs
- Here: rules for drop

• Troublesome DP problem:

```
( \{ \operatorname{dfoldl}^{\sharp} f \ y \ n \ (\operatorname{cons} x \ l) \Rightarrow \operatorname{dfoldl}^{\sharp} f \ (f \ y \ x) \ n \ (\operatorname{drop} n \ l) \ [n \equiv n] \ \}, \ \mathcal{R}_{\operatorname{dfoldl}} )
```

• Troublesome DP problem:

```
( \{ \mathsf{dfoldl}^\sharp \ f \ y \ n \ (\mathsf{cons} \ x \ l) \Rightarrow \mathsf{dfoldl}^\sharp \ f \ (f \ y \ x) \ n \ (\mathsf{drop} \ n \ l) \ [n \equiv n] \ \}, \ \mathcal{R}_{\mathsf{dfoldl}} )
```

All rules are usable!

• Troublesome DP problem:

```
( \{ \mathsf{dfoldl}^\sharp \ f \ y \ n \ (\mathsf{cons} \ x \ l) \Rightarrow \mathsf{dfoldl}^\sharp \ f \ (f \ y \ x) \ n \ (\mathsf{drop} \ n \ l) \ [n \equiv n] \ \}, \ \mathcal{R}_{\mathsf{dfoldl}} )
```

- All rules are usable!
- Reduction pair processor with usable rules wrt argument filtering:
 temporarily disregard arguments, calculate usable rules, use reduction pair (HORPO, ...)

$\mathcal{R}_{\mathsf{dfoldl}}$

```
\begin{array}{llll} \operatorname{drop} n \ l & \to & l & [n \leq 0] \\ \operatorname{drop} n \ \operatorname{nil} & \to & \operatorname{nil} & [n \equiv n] \\ \operatorname{drop} n \ (\operatorname{cons} x \ l) & \to & \operatorname{drop} \ (n-1) \ l & [n > 0] \\ \end{array} \begin{array}{lll} \operatorname{dfoldl} f \ y \ n \ \operatorname{nil} & \to & y & [n \equiv n] \\ \operatorname{dfoldl} f \ y \ n \ (\operatorname{cons} x \ l) & \to & \operatorname{dfoldl} f \ (f \ y \ x) \ n \ (\operatorname{drop} n \ l) & [n \equiv n] \end{array}
```

• Troublesome DP problem:

```
( \{ \mathsf{dfoldl}^{\sharp} \ f \ y \ n \ (\mathsf{cons} \ x \ l) \Rightarrow \mathsf{dfoldl}^{\sharp} \ f \ (f \ y \ x) \ n \ (\mathsf{drop} \ n \ l) \ [n \equiv n] \ \}, \ \mathcal{R}_{\mathsf{dfoldl}} )
```

- All rules are usable!
- Reduction pair processor with usable rules wrt argument filtering:
 temporarily disregard arguments, calculate usable rules, use reduction pair (HORPO, ...)
- $\operatorname{regard}(\operatorname{\mathsf{dfoldl}}^{\sharp}) = \{4\} \Rightarrow \operatorname{\mathsf{use}} \text{ first-order RPO!}$

• Troublesome DP problem:

```
( \{ \mathsf{dfoldl}^{\sharp} \qquad (\mathsf{cons} \ x \ l) \Rightarrow \mathsf{dfoldl}^{\sharp} \qquad (\mathsf{drop} \ n \ l) \ [n \equiv n] \ \}, \ \mathcal{R}_{\mathsf{dfoldl}} )
```

- All rules are usable!
- Reduction pair processor with usable rules wrt argument filtering:
 temporarily disregard arguments, calculate usable rules, use reduction pair (HORPO, ...)
- $\operatorname{regard}(\operatorname{\mathsf{dfoldl}}^{\sharp}) = \{4\} \Rightarrow \operatorname{\mathsf{use}} \text{ first-order RPO!}$

dfoldl $f y n (cons x l) \rightarrow dfoldl f (f y x) n (drop n l) [n \equiv n]$

```
\mathcal{R}_{\mathsf{dfoldl}}
```

 $\begin{array}{lll} \operatorname{drop} \; n \; l & \to \; l & [n \leq 0] \\ \operatorname{drop} \; n \; \operatorname{nil} & \to \; \operatorname{nil} & [n \equiv n] \\ \operatorname{drop} \; n \; (\operatorname{cons} \; x \; l) & \to \; \operatorname{drop} \; (n-1) \; l & [n > 0] \end{array}$

• Troublesome DP problem:

$$(\{ \mathsf{dfoldl}^{\sharp} \qquad (\mathsf{cons} \ x \ l) \Rightarrow \mathsf{dfoldl}^{\sharp} \qquad (\mathsf{drop} \ n \ l) \ [n \equiv n] \ \}, \ \mathcal{R}_{\mathsf{dfoldl}})$$

- All rules are usable!
- Reduction pair processor with usable rules wrt argument filtering:
 temporarily disregard arguments, calculate usable rules, use reduction pair (HORPO, ...)
- $\operatorname{regard}(\operatorname{\mathsf{dfoldl}}^{\sharp}) = \{4\} \Rightarrow \operatorname{\mathsf{use}} \operatorname{\mathsf{first-order}} \mathsf{RPO!}$

- Automated translations ⇒ DPs with many small steps
- Can be hard to analyse!

- Automated translations ⇒ DPs with many small steps
- Can be hard to analyse!
- Chaining processor: remove intermediate symbols u₁[‡]

- Automated translations ⇒ DPs with many small steps
- Can be hard to analyse!
- Chaining processor: remove intermediate symbols u_1^{\sharp} , u_3^{\sharp}

- ullet Automated translations \Rightarrow DPs with many small steps
- Can be hard to analyse!
- Chaining processor: remove intermediate symbols u_1^{\sharp} , u_3^{\sharp} , u_4^{\sharp}

- Automated translations ⇒ DPs with many small steps
- Can be hard to analyse!
- Chaining processor: remove intermediate symbols u_1^{\sharp} , u_3^{\sharp} , u_4^{\sharp}

- Automated translations ⇒ DPs with many small steps
- Can be hard to analyse!
- Chaining processor: remove intermediate symbols u_1^{\sharp} , u_3^{\sharp} , u_4^{\sharp}

- Automated translations ⇒ DPs with many small steps
- Can be hard to analyse!
- Chaining processor: remove intermediate symbols u_1^{\sharp} , u_3^{\sharp} , u_4^{\sharp}
- Integer mapping processor + graph processor prove termination

• Goal: compositional open-world program analysis

- Goal: compositional open-world program analysis
- For termination analysis: Universal Computability [Guo, Hagens, Kop, Vale, MFCS '24]

- Goal: compositional open-world program analysis
- For termination analysis: Universal Computability [Guo, Hagens, Kop, Vale, MFCS '24]
- Analyse LCSTRS for use in context of larger program

- Goal: compositional open-world program analysis
- For termination analysis: Universal Computability [Guo, Hagens, Kop, Vale, MFCS '24]
- Analyse LCSTRS for use in context of larger program
- Usable rules + reduction pair processor available for innermost (and cbv) rewriting!

Implementation

- Implementation in open-source tool Cora: https://github.com/hezzel/cora/
- HORPO as reduction pair
- Z3 as SMT solver

Experiments (1/3)

Experiments using 60 seconds timeout

Experiments (1/3)

Experiments using 60 seconds timeout

275 inputs: integer TRSs + λ -free HO-TRSs from TPDB + own benchmarks

Experiments (1/3)

Experiments using 60 seconds timeout

275 inputs: integer TRSs + λ -free HO-TRSs from TPDB + own benchmarks

Cora (innermost/cbv) v Cora (full) [Guo, Hagens, Kop, Vale, MFCS '24]

		Termination		Universal Computability		
	Full	Innermost	Call-by-value	Full	Innermost	Call-by-value
Total yes	171	179	182	155	179	182

Experiments (2/3)

117 integer TRSs: Cora v AProVE [Giesl et al, JAR '17] [Fuhs et al, RTA '09]

	Cora innermost	Cora call-by-value	AProVE innermost
Total yes	72	73	102

Experiments (2/3)

117 integer TRSs: Cora v AProVE [Giesl et al, JAR '17] [Fuhs et al, RTA '09]

	Cora innermost	Cora call-by-value	AProVE innermost
Total yes	72	73	102

- AProVE has strong reduction pair processor with polynomial interpretations and usable rules
- AProVE can handle rules $f(x) \to g(x > 0, x), g(\mathfrak{t}, x) \to r_1, g(\mathfrak{f}, x) \to r_2$ well

Experiments (3/3)

140 λ -free HO-TRSs: Cora v WANDA [Kop, *FSCD '20*]

	Cora innermost / call-by-value	WANDA full termination
Total yes	79	105

Experiments (3/3)

140 λ -free HO-TRSs: Cora v WANDA [Kop, *FSCD '20*]

	Cora innermost / call-by-value	WANDA full termination
Total yes	79	105

• WANDA: Polynomial interpretations, dynamic DPs, delegation to first-order termination tool,

20/21

- Transformation for analysis of LCSTRSs with call-by-value via innermost strategy
- Three new processors: usable rules, reduction pair with temporary argument filtering, chaining
- Improved open-world termination analysis

- Transformation for analysis of LCSTRSs with call-by-value via innermost strategy
- Three new processors: usable rules, reduction pair with temporary argument filtering, chaining
- Improved open-world termination analysis
- Implementation: https://github.com/hezzel/cora/
- Evaluation page: https://www.cs.ru.nl/~cynthiakop/experiments/fscd25/

- Transformation for analysis of LCSTRSs with call-by-value via innermost strategy
- Three new processors: usable rules, reduction pair with temporary argument filtering, chaining
- Improved open-world termination analysis
- Implementation: https://github.com/hezzel/cora/
- Evaluation page: https://www.cs.ru.nl/~cynthiakop/experiments/fscd25/
- FSCD 2025 paper:

An Innermost DP Framework for Constrained Higher-Order Rewriting

Carsten Fuhs

□

□

Birkbeck, University of London, UK

Liye Guo ⊠ ®

Radboud University, Nijmegen, The Netherlands

Cynthia Kop ⊠©

Radboud University, Nijmegen, The Netherlands

- Transformation for analysis of LCSTRSs with call-by-value via innermost strategy
- Three new processors: usable rules, reduction pair with temporary argument filtering, chaining
- Improved open-world termination analysis
- Implementation: https://github.com/hezzel/cora/
- Evaluation page: https://www.cs.ru.nl/~cynthiakop/experiments/fscd25/
- FSCD 2025 paper:

An Innermost DP Framework for Constrained Higher-Order Rewriting

Carsten Fuhs
□
Birkbeck, University of London, UK

Liye Guo □
Radboud University, Nijmegen, The Netherlands

Cynthia Kop □
Radboud University, Nijmegen, The Netherlands

Thanks a lot for your attention!