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Our intermediate representation: LCSTRSs

Ideal intermediate representation should
@ be good for automated reasoning (no “lost in encoding”)

@ express language features directly length nil — zero

length (cons z zs) — s (length xs)
plus = zero — x J

plus z (s y) —'s (plus z y)

What is available?
@ Term Rewriting Systems aka TRSs: functions on algebraic data structures

o Integer Transition Systems aka ITSs: functions/statements on integer data + arithmetic

ged m n—ged (—m) n[m < 0] gcd m n— ged m (—n) [n < 0]
gcdm 0 —m [m > 0] gcd m n—ged n (m mod n) [m > 0An > 0] J

o Logically Constrained TRSs aka LCTRSs [Kop, Nishida, FroCoS '13]:
TRSs + ITSs + arbitrary logical theories (arrays, bitvectors, ...)
o Logically Constrained Simply-typed TRSs aka LCSTRSs [Guo, Kop, ESOP "24]:
LCTRSs + higher-order functions (but no \)
gedlist : intlist — int, fold : (int — int — int) — int — intlist — int
gedlist — fold ged 0 | fold f y nil -y | fold fy (consx i) — f x (fold f y 1)
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@ Literature on termination: focus on innermost rewriting
@ Solution [Fuhs, Guo, Kop, FSCD "25]: mention x :int in constraint = = must be value!

@ int is inextensible theory sort

fact 0 -1
fact x = x * fact (x — 1) [z > 0]
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Evaluating with an LCSTRS

fact 0 —1
fact x >z x fact (z — 1) [z > 0]
gz —g (fact —1)
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@ Cbv: used in programming languages
@ Want to prove termination of cbv rewriting!

@ Literature on termination:
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Innermost rewriting
Proper subterms of redex:
normal forms
g (fact 1) =g (1 % fact 0)
Sg(1x1) -
S g (fact —1) 5 g (fact —1)

i

— ...

—gl

@ Solution [Fuhs, Guo, Kop, FSCD '25]: mention x :int in constraint = x must be value!

@ int is inextensible theory sort

fact 0 — 1
fact z > x xfact (z — 1) [z >

gz —g (fact —1) [z =

0]

]

= Terminates also for innermost rewriting!
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Static Dependency Pairs
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Dependency Pair Framework

@ Works on DP problems (P, R)
@ DP framework:
S :={(SDP(R),R)}
while S = S"W {(P,R)}
S :=5"Up(P,R) for a DP processor p
print “YES"

Existing DP processors for LCSTRSs [Guo, Hagens, Kop, Vale, MFCS '24]
@ Graph processor
@ Subterm criterion processor
@ Integer mapping processor

New innermost DP processors for LCSTRSs [Fuhs, Guo, Kop, FSCD '25]
@ Usable rules processor
@ Reduction pair processor with usable rules wrt argument filtering
@ Chaining processor

Also for compositional termination analysis via universal computability! ,
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P

(1) gedlist? I! = fold* ged 0 I/ (4) ged* m n = ged® (—m) n [m < 0An=n]
(2) gedlist? I! = ged® m/ n/ (5) ged* m n = ged® m (—n) [n < 0Am =m)]
(3) fold* f y (cons & 1) = fold® f y I [z =axAy =1y] | (6) gcd® m n = ged® n (m mod n) [m > 0An > 0]

v

R
o Dependency Graph: o Graph processor: decompose P into
which calls may follow one another? non-trivial Strongly Connected Components
@ Approximation @ Here:

[Guo, Hagens, Kop, Vale, MFCS '24]: ({(3)}R)
(@) ({(6)},R)
HONGIRD
(@l Ty e
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(3) fold* fy (consz 1) = fold* fyl[z=2Ay=y

4
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(3) fold* fy (consz 1) = fold* fyl[z=2Ay=y

4

Subterm criterion processor [Guo, Hagens, Kop, Vale, MFCS '24]
@ Detect structural decrease in argument
e Use projection v(fold*) = 3
o Get consx il
= Remove (3)
= (0, R) deleted by graph processor

10/21



(6) gcd® m n = ged® n (m mod n) [m > 0An > 0]
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4

Integer mapping processor [Guo, Hagens, Kop, Vale, MFCS '24]
@ Detect integer value decrease in argument
@ Use projection u(gcd’j) =2
e Get m>0An>0 | n>mmodn
and m>0An>0 E n>0

= Remove (6)
= (0,R) deleted by graph processor
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(6) gcd® m n = ged® n (m mod n) [m > 0An > 0]

Integer mapping processor [Guo, Hagens, Kop, Vale, MFCS '24]
@ Detect integer value decrease in argument
@ Use projection u(gcd’j) =2
e Get m>0An>0 | n>mmodn
and m>0An>0 E n>0

= Remove (6)
= (0,R) deleted by graph processor

({(4),(5)},R) handled by integer mapping processor + graph processor

= termination of Rgcq proved!
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New DP processors for LCSTRSs



Usable rules processor

Rdfoldr

drop : int — alist — alist
dfoldr : (a = b — b) — b — int — alist = b

drop n I — 1

drop n nil — nil

drop n (cons z 1) — drop (n—1) 1

dfoldr f y n nil — ¥

dfoldr f y n (cons x I) — f x (dfoldr f y n (drop n 1))

[n < 0]
[n = n]
[n > 0]

[n = n]
[n = n]
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Reduction pair processor with usable rules wrt an argument filtering
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Reduction pair processor with usable rules wrt an argument filtering

Rdfoldi

drop n l — 1 [n < 0]
drop n nil — il [n = n]
drop n (cons z 1) — drop (n—1) 1 [n > 0]
dfoldl f y n nil -y n = n)
dfoldl f y n (cons z 1) — dfoldl f (f y ) n (drop nl) [n=n]

@ Troublesome DP problem:

( { dfoldl® fyn (cons x 1) = dfoldl’ f (fyz)n (dropnl)[n=n] }, Rdeld )

@ All rules are usablel

@ Reduction pair processor with usable rules wrt argument filtering:

temporarily disregard arguments, calculate usable rules, use reduction pair (HORPO, ...)
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Reduction pair processor with usable rules wrt an argument filtering

Rdfoldi

drop n [ — 1 [n < 0]

drop n nil — il [n = n]

drop n (cons z 1) — drop (n—1) 1 [n > 0]
@ Troublesome DP problem:

( { dfoldl* (cons z 1) = dfoldl* (dropnl) [n=n] }, Rdold )

@ All rules are usablel

Reduction pair processor with usable rules wrt argument filtering:

temporarily disregard arguments, calculate usable rules, use reduction pair (HORPO, ...)

regard(dfoldl’) = {4} = use first-order RPO!
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Chaining processor

(S)DPs from imperative program

def fact(x):
z =1
i=1
while i <= x:
z =z % i
i=1i+1

HOHF H H H H

fact
ul
u2
u3
u4
ub
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Chaining processor

(S)DPs from imperative program

def fact(x): factt z = ufzil [z = x]
z = 1 # fact uwzz = warzl [z=xzAz=2]
i=1 # ul wirzi = ufzzi [i<zAz=2z]
while i <= x: # u2 usfz2zi = wlz(zxi)i [z=zAz=2Ai=1
z=zx1i #u3 uwfzzi = wWrz(@+l) r=zAz=2Ai=d)
i=1+1 # u4 wrrzi = usfzz (i <z)Az2=72]
# ub )

o Automated translations = DPs with many small steps
@ Can be hard to analysel!

15/21



Chaining processor

(S)DPs from imperative program

def fact(x): factt z = ufzil [z = x]
z = 1 # fact uwzz = warzl [z=xzAz=2]
i=1 # ul wirzi = ufzzi [i<zAz=2z]
while i <= x: # u2 usfz2zi = wlz(zxi)i [z=zAz=2Ai=1
z=zx1i #u3 uwfzzi = wWrz(@+l) r=zAz=2Ai=d)
i=1+1 # u4 wrrzi = usfzz (i <z)Az2=72]
# ub )

o Automated translations = DPs with many small steps
@ Can be hard to analysel!

e Chaining processor: remove intermediate symbols u*

15/21
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def fact(x): factf z =
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(S)DPs from imperative program

def fact(x):
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Chaining processor

(S)DPs from imperative program

def fact(x):
Zi 1 @ ffees factt z = wiz11 [z = z]
171 . #ul wWirzi = wrz@i+l) [<rAz=2]
while i <= x: # u2 § . § - .
. w*rzi = us"fxz [ <z)Az=72]
z=2z%1 # u3
i=1i+1 # u4
# ub |

o Automated translations = DPs with many small steps
@ Can be hard to analysel!

e Chaining processor: remove intermediate symbols u1?, us?, us

@ Integer mapping processor + graph processor prove termination
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Compositional analysis from Universal Computability

@ Goal: compositional open-world program analysis
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Compositional analysis from Universal Computability

@ Goal: compositional open-world program analysis
e For termination analysis: Universal Computability [Guo, Hagens, Kop, Vale, MFCS '24]
@ Analyse LCSTRS for use in context of larger program

@ Usable rules + reduction pair processor available for innermost (and cbv) rewriting!
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Implementation

@ Implementation in open-source tool Cora: https://github.com/hezzel/cora/
@ HORPO as reduction pair
@ Z3 as SMT solver
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Experiments (1/3)

Experiments using 60 seconds timeout
275 inputs: integer TRSs + \-free HO-TRSs from TPDB + own benchmarks

Cora (innermost/cbv) v Cora (full) [Guo, Hagens, Kop, Vale, MFCS '24]

Termination Universal Computability
Full  Innermost Call-by-value | Full Innermost Call-by-value
Total yes | 171 179 182|155 179 182
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Experiments (2/3)

117 integer TRSs: Cora v AProVE [Giesl et al, JAR '17] [Fuhs et al, RTA '09]

‘ Cora innermost  Cora call-by-value  AProVE innermost
Total yes | 72 73 102
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Experiments (2/3)

117 integer TRSs: Cora v AProVE [Giesl et al, JAR '17] [Fuhs et al, RTA '09]

‘ Cora innermost  Cora call-by-value  AProVE innermost
Total yes | 72 73 102

@ AProVE has strong reduction pair processor with polynomial interpretations and usable rules

@ AProVE can handle rules f(z) — g(x > 0,z), g(t,x) = 1, g(f,z) = r2  well
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Experiments (3/3)

140 \-free HO-TRSs: Cora v WANDA [Kop, FSCD "20]

‘ Cora innermost / call-by-value WANDA full termination
Total yes ‘ 79 105
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Experiments (3/3)

140 \-free HO-TRSs: Cora v WANDA [Kop, FSCD "20]

‘ Cora innermost / call-by-value WANDA full termination
Total yes ‘ 79 105

e WANDA: Polynomial interpretations, dynamic DPs, delegation to first-order termination tool,
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Conclusion

@ Transformation for analysis of LCSTRSs with call-by-value via innermost strategy
@ Three new processors: usable rules, reduction pair with temporary argument filtering, chaining

@ Improved open-world termination analysis
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Conclusion

Transformation for analysis of LCSTRSs with call-by-value via innermost strategy

Three new processors: usable rules, reduction pair with temporary argument filtering, chaining

Improved open-world termination analysis

Implementation: https://github.com/hezzel/cora/

Evaluation page: https://www.cs.ru.nl/~cynthiakop/experiments/fscd25/
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Thanks a lot for your attention!
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