Proving Call-by-Value Termination of Constrained Higher-Order Rewriting by

Dependency Pairs

Carsten Fuhs' Liye Guo®> Cynthia Kop?

1 Birkbeck, University of London

2 Radboud University Nijmegen

Deduktionstreffen 2025
Stuttgart, Germany
1 August 2025

Proving Call-by-Value Termination of Constrained Higher-Order Rewriting by

Dependency Pairs: Overview

Proving program termination:

Program P in

language L

Intermediate
representation Rp

YES/NO/MAYBE
for Rp + proof

2/21

Proving Call-by-Value Termination of Constrained Higher-Order Rewriting by

Dependency Pairs: Overview

Proving program termination:

Program P in A Intermediate . YES/NO/MAYBE
language L ‘| representation Rp I for Rp + proof

Many translations in the literature

Prolog [van Raamsdonk, ICLP '97], [Giesl et al, PPDP '12]
Java [Otto et al, RTA '10]

Haskell [Giesl et al, TOPLAS '11]

LLVM [Stroder et al, JAR '17]

C [Fuhs, Kop, Nishida, TOCL '17]

Jinja [Moser, Schaper, IC 18]

Scala [Milovancevi¢, Fuhs, Kunéak, WPTE '25]

2/21

Proving Call-by-Value Termination of Constrained Higher-Order Rewriting by

Dependency Pairs: Overview

Proving program termination:

Program P in

language L

Intermediate
representation Rp

YES/NO/MAYBE
for Rp + proof

3/21

Proving Call-by-Value Termination of Constrained Higher-Order Rewriting by

Dependency Pairs: Overview

Proving program termination:

Program P in

language L

Intermediate representations based on
@ Term Rewriting Systems: TRSs

@ Integer Transition Systems: ITSs

Intermediate
representation Rp

@ combinations and extensions: constrained rewriting

YES/NO/MAYBE
for Rp + proof

3/21

Proving Call-by-Value Termination of Constrained Higher-Order Rewriting by

Dependency Pairs: Overview

Proving program termination:

Program P in A Intermediate . YES/NO/MAYBE
language L ‘| representation Rp I for Rp + proof

Constrained Higher-Order
Rewriting . ..
Intermediate representations based on
@ Term Rewriting Systems: TRSs
@ Integer Transition Systems: ITSs

@ combinations and extensions: constrained rewriting

3/21

Proving Call-by-Value Termination of Constrained Higher-Order Rewriting by

Dependency Pairs: Overview

Proving program termination:

Program P in A Intermediate . YES/NO/MAYBE
language L ‘| representation Rp I for Rp + proof
Constrained Higher-Order | | ... using Call-by-
Rewriting . .. Value evaluation

Intermediate representations based on
@ Term Rewriting Systems: TRSs
@ Integer Transition Systems: ITSs

@ combinations and extensions: constrained rewriting

3/21

Proving Call-by-Value Termination of Constrained Higher-Order Rewriting by

Dependency Pairs: Overview

Proving program termination:

Program P in A Intermediate | YES/NO/MAYBE
language L ‘| representation Rp for Rp + proof

~

Constrained Higher-Order | | ... using Call-by- Prove Termination using
Rewriting . .. Value evaluation Dependency Pairs
Intermediate representations based on
@ Term Rewriting Systems: TRSs
@ Integer Transition Systems: ITSs

@ combinations and extensions: constrained rewriting

3/21

Our intermediate representation: LCSTRSs

Ideal intermediate representation should
@ be good for automated reasoning (no “lost in encoding”)

@ express language features directly

4/21

Our intermediate representation: LCSTRSs

Ideal intermediate representation should
@ be good for automated reasoning (no “lost in encoding”)

@ express language features directly

What is available?

4/21

Our intermediate representation: LCSTRSs

Ideal intermediate representation should
@ be good for automated reasoning (no “lost in encoding”)

@ express language features directly length nil — zero

What is available? plus zero — x

@ Term Rewriting Systems aka TRSs: functions on algebraic data structures

length (cons z zs) — s (length xs)
plus z (s y) —s (plus x y) J

4/21

Our intermediate representation: LCSTRSs

Ideal intermediate representation should
@ be good for automated reasoning (no “lost in encoding”)

@ express language features directly length nil — zero

What is available? plus zero — x

@ Term Rewriting Systems aka TRSs: functions on algebraic data structures

length (cons z zs) — s (length xs)
plus z (s y) —'s (plus z y) J

o Integer Transition Systems aka ITSs: functions/statements on integer data + arithmetic

ged m n—ged (—m) n[m < 0] gcd m n— ged m (—n) [n < 0]
gcdm 0 —m [m > 0] gcd m n—ged n (m mod n) [m > 0An > 0] J

4/21

Our intermediate representation: LCSTRSs

Ideal intermediate representation should
@ be good for automated reasoning (no “lost in encoding”)

@ express language features directly length nil — zero

What is available? plus zero — x

@ Term Rewriting Systems aka TRSs: functions on algebraic data structures

length (cons z zs) — s (length xs)
plus z (s y) —'s (plus z y) J

o Integer Transition Systems aka ITSs: functions/statements on integer data + arithmetic

ged m n—ged (—m) n[m < 0] gcd m n— ged m (—n) [n < 0]
gcdm 0 —m [m > 0] gcd m n—ged n (m mod n) [m > 0An > 0] J

o Logically Constrained TRSs aka LCTRSs [Kop, Nishida, FroCoS '13]:
TRSs + ITSs + arbitrary logical theories (arrays, bitvectors, ...)

4/21

Our intermediate representation: LCSTRSs

Ideal intermediate representation should
@ be good for automated reasoning (no “lost in encoding”)

@ express language features directly length nil — zero

length (cons z zs) — s (length xs)
plus = zero — x J

plus z (s y) —'s (plus z y)

What is available?
@ Term Rewriting Systems aka TRSs: functions on algebraic data structures

o Integer Transition Systems aka ITSs: functions/statements on integer data + arithmetic

ged m n—ged (—m) n[m < 0] gcd m n— ged m (—n) [n < 0]
gcdm 0 —m [m > 0] gcd m n—ged n (m mod n) [m > 0An > 0] J

o Logically Constrained TRSs aka LCTRSs [Kop, Nishida, FroCoS '13]:
TRSs + ITSs + arbitrary logical theories (arrays, bitvectors, ...)
o Logically Constrained Simply-typed TRSs aka LCSTRSs [Guo, Kop, ESOP "24]:
LCTRSs + higher-order functions (but no \)
gedlist : intlist — int, fold : (int — int — int) — int — intlist — int
gedlist — fold ged 0 | fold f y nil -y | fold fy (consx i) — f x (fold f y 1)

/21

Call-by-value (cbv) and innermost rewriting for LCSTRSs
Evaluating with an LCSTRS

fact 0 —1
fact x — x x fact (x — 1) [z > 0]
gz —g (fact —1)

5/21

Call-by-value (cbv) and innermost rewriting for LCSTRSs
Evaluating with an LCSTRS

fact 0 —1
fact x — x x fact (x — 1) [z > 0]
gz —g (fact —1)

Cbv rewriting
Proper subterms of redex:
ground values

g (fact 1) =g (1= fact 0)
—g(lx1l) Sgl
g (fact —1) A

5/21

Call-by-value (cbv) and innermost rewriting for LCSTRSs

Evaluating with an LCSTRS

fact 0 —1
fact x — x x fact (x — 1) [z > 0]
gz —g (fact —1)

Cbv rewriting
Proper subterms of redex:
ground values

g (fact 1) =g (1= fact 0)
—g(lx1l) Sgl
g (fact —1) A

@ Cbv: used in programming languages
@ Want to prove termination of cbv rewriting!

5/21

Call-by-value (cbv) and innermost rewriting for LCSTRSs

Evaluating with an LCSTRS

fact0—1
fact x — x x fact (x — 1) [z > 0]

gz —g (fact —1)

Cbv rewriting
Proper subterms of redex:
ground values

g (fact 1) =g (1= fact 0)
—g(lx1l) Sgl
g (fact —1) A

@ Cbv: used in programming languages
@ Want to prove termination of cbv rewriting!
@ Literature on termination: focus on innermost rewriting

5/21

Call-by-value (cbv) and innermost rewriting for LCSTRSs

Evaluating with an LCSTRS

fact0—1
fact x >z x fact (z — 1) [z > 0]

gz —g (fact —1)

Cbv rewriting
Proper subterms of redex:
ground values

g (fact 1) =g (1= fact 0)
—g(1x1) =gl
g (fact —1) A

@ Cbv: used in programming languages
@ Want to prove termination of cbv rewriting!
@ Literature on termination: focus on innermost rewriting

Innermost rewriting
Proper subterms of redex:

normal forms
g (fact 1) —g (1 xfact0)

—~gl
S g (fact —1) 5 g (fact —1)

Sg(1x1)

i

— ...

5/21

Call-by-value (cbv) and innermost rewriting for LCSTRSs

Evaluating with an LCSTRS

fact 0 —1
fact x >z x fact (z — 1) [z > 0]
gz —g (fact —1)

Cbv rewriting
Proper subterms of redex:
ground values

g (fact 1) =g (1= fact 0)
—g(1x1) =gl
g (fact —1) A

@ Cbv: used in programming languages

@ Want to prove termination of cbv rewriting!

@ Literature on termination: focus on innermost rewriting
@ Solution [Fuhs, Guo, Kop, FSCD "25]: mention x :int in constraint = = must be value!

@ int is inextensible theory sort

Innermost rewriting
Proper subterms of redex:
normal forms
g (fact 1) =g (1 % fact 0)
Sg(1x1) -
S g (fact —1) 5 g (fact —1)

i

— ...

—gl

5/21

Call-by-value (cbv) and innermost rewriting for LCSTRSs

Evaluating with an LCSTRS

fact 0 —1
fact x >z x fact (z — 1) [z > 0]
gz —g (fact —1)

Cbv rewriting
Proper subterms of redex:
ground values

g (fact 1) =g (1= fact 0)
—g(1x1) =gl
g (fact —1) A

@ Cbv: used in programming languages
@ Want to prove termination of cbv rewriting!

Innermost rewriting
Proper subterms of redex:
normal forms
g (fact 1) =g (1 % fact 0)
Sg(1x1) -
S g (fact —1) 5 g (fact —1)

i

— ...

—gl

@ Literature on termination: focus on innermost rewriting
@ Solution [Fuhs, Guo, Kop, FSCD "25]: mention x :int in constraint = = must be value!

@ int is inextensible theory sort

fact 0 -1
fact x = x * fact (x — 1) [z > 0]
gz —g (fact —1) [z = x]

5/21

Call-by-value (cbv) and innermost rewriting for LCSTRSs

Evaluating with an LCSTRS

fact 0 —1
fact x >z x fact (z — 1) [z > 0]
gz —g (fact —1)

Cbv rewriting
Proper subterms of redex:
ground values

g (fact 1) =g (1= fact 0)
—g(1x1) =gl
g (fact —1) A

@ Cbv: used in programming languages
@ Want to prove termination of cbv rewriting!

@ Literature on termination:

focus on innermost rewriting

Innermost rewriting
Proper subterms of redex:
normal forms
g (fact 1) =g (1 % fact 0)
Sg(1x1) -
S g (fact —1) 5 g (fact —1)

i

— ...

—gl

@ Solution [Fuhs, Guo, Kop, FSCD '25]: mention x :int in constraint = x must be value!

@ int is inextensible theory sort

fact 0 — 1
fact z > x xfact (z — 1) [z >

gz —g (fact —1) [z =

0]

]

= Terminates also for innermost rewriting!

5/21

Static Dependency Pairs

gcdlist — fold ged 0
fold fynil =y [y=y] | fold fy (conszl)— fax(fold fyl) [xr=xAy=y]

gcd mn—ged (—m) nm < 0An=n] gcd m n—ged m (—n) [n <0Am=m]
gcdm 0 —=m [m > 0] ged m n—ged n (m mod n) [m > 0An > 0]

6/21

Static Dependency Pairs

gcdlist — fold ged 0
fold fynil =y [y=y] | fold fy (conszl)— fax(fold fyl) [xr=xAy=y]

gcdm 0 —=m [m > 0] ged m n—ged n (m mod n) [m > 0An > 0]

gcd mn—ged (—m) nm < 0An=n] gcd m n—ged m (—n) [n <0Am=m]

Prove termination by Static Dependency Pairs for LCSTRSs [Guo, Hagens, Kop, Vale, MFCS '24]
@ For LCSTRS R build dependency pairs P = SDP(Rgcq) (~ function calls)

6/21

Static Dependency Pairs

gcdlist — fold ged 0
fold fynil =y [y=y] | fold fy (conszl)— fax(fold fyl) [xr=xAy=y]

gcdm 0 —=m [m > 0] ged m n—ged n (m mod n) [m > 0An > 0]

gcd mn—ged (—m) nm < 0An=n] gcd m n—ged m (—n) [n <0Am=m]

Prove termination by Static Dependency Pairs for LCSTRSs [Guo, Hagens, Kop, Vale, MFCS '24]
@ For LCSTRS R build dependency pairs P = SDP(Rgcq) (~ function calls)
@ Show: No oo call sequence with P (eval of P’s args via R)

6/21

Static Dependency Pairs

gcdlist — fold ged 0

fold fynil =y [y=y] | fold fy (conszl)— fax(fold fyl) [xr=xAy=y]

gcdm 0 —=m [m > 0] ged m n—ged n (m mod n) [m > 0An > 0]

gcd mn—ged (—m) nm < 0An=n] gcd m n—ged m (—n) [n <0Am=m]

Prove termination by Static Dependency Pairs for LCSTRSs [Guo, Hagens, Kop, Vale, MFCS '24]
@ For LCSTRS R build dependency pairs P = SDP(Rgcq) (~ function calls)
@ Show: No oo call sequence with P (eval of P’s args via R)

gedlist® I = fold* ged 0 I/ ged®* m n = ged® (—=m) n [m < 0An=n]
gedlist® I = ged® m/ n/ ged®* m n = ged* m (—n) [n <OAmM =m)
fold* f y (cons z 1) = fold* f y I [z = zAy = y] | ged® m n = ged® n (m mod n) [m > 0An > 0]

6/21

Dependency Pair Framework

@ Works on DP problems (P, R)
@ DP framework:
S :={(SDP(R),R)}
while S = S"W {(P,R)}
S :=5"Up(P,R) for a DP processor p
print “YES"

7/21

Dependency Pair Framework

@ Works on DP problems (P, R)
@ DP framework:
S :={(SDP(R),R)}
while S = S"W {(P,R)}
S :=5"Up(P,R) for a DP processor p
print “YES"

Existing DP processors for LCSTRSs [Guo, Hagens, Kop, Vale, MFCS '24]
@ Graph processor
@ Subterm criterion processor
@ Integer mapping processor

7/21

Dependency Pair Framework

@ Works on DP problems (P, R)
@ DP framework:
S :={(SDP(R),R)}
while S = S"W {(P,R)}
S :=5"Up(P,R) for a DP processor p
print “YES"

Existing DP processors for LCSTRSs [Guo, Hagens, Kop, Vale, MFCS '24]
@ Graph processor
@ Subterm criterion processor
@ Integer mapping processor

New innermost DP processors for LCSTRSs [Fuhs, Guo, Kop, FSCD '25]
@ Usable rules processor
@ Reduction pair processor with usable rules wrt argument filtering
@ Chaining processor

Also for compositional termination analysis via universal computability! ,
7/21

Existing DP processors for LCSTRSs

(1) gedlist? I! = fold* ged 0 I/ (4) ged* m n = ged® (—m) n [m < 0An=n]
(2) gedlist? I! = ged® m/ n/ (5) ged* m n = ged® m (—n) [n < 0Am =m)]
(3) fold* f y (cons & 1) = fold® f y I [z =axAy =1y] | (6) gcd® m n = ged® n (m mod n) [m > 0An > 0]

9/21

(1) gedlist? I! = fold* ged 0 I/ (4) ged* m n = ged® (—m) n [m < 0An=n]
(2) gedlist? I! = ged® m/ n/ (5) ged* m n = ged® m (—n) [n < 0Am =m)]
(3) fold* f y (cons & 1) = fold® f y I [z =axAy =1y] | (6) gcd® m n = ged® n (m mod n) [m > 0An > 0]

v

9/21

(1) gedlist? I! = fold* ged 0 I/ (4) ged* m n = ged® (—m) n [m < 0An=n]
2) gedlist? I = ged® m/ n/ 5) gcd® mn = ged® m (—n) [n < 0Am = m]
g
3) fold® f y (cons z 1) = fold® f y I [z = zAy = y] | (6) gcd® m n = ged® n (m mod n) [m > 0An > 0]
Y

v

o Dependency Graph:
which calls may follow one another?

9/21

P

(1) gedlist? I! = fold* ged 0 I/ (4) ged* m n = ged® (—m) n [m < 0An=n]
(2) gedlist? I! = ged® m/ n/ (5) ged* m n = ged® m (—n) [n < 0Am =m)]
(3) fold* f y (cons & 1) = fold® f y I [z =axAy =1y] | (6) gcd® m n = ged® n (m mod n) [m > 0An > 0]

v

R

o Dependency Graph:
which calls may follow one another?

@ Approximation
[Guo, Hagens, Kop, Vale, MFCS "24]:

(@) @—wr
(@] 1))

9/21

P

(1) gedlist? I! = fold* ged 0 I/ (4) ged* m n = ged® (—m) n [m < 0An=n]
(2) gedlist? I! = ged® m/ n/ (5) ged* m n = ged® m (—n) [n < 0Am =m)]
(3) fold* f y (cons & 1) = fold® f y I [z =axAy =1y] | (6) gcd® m n = ged® n (m mod n) [m > 0An > 0]

v

R

o Dependency Graph: o Graph processor: decompose P into
which calls may follow one another? non-trivial Strongly Connected Components

@ Approximation
[Guo, Hagens, Kop, Vale, MFCS "24]:

(@) @—wr
(@] 1))

9/21

P

(1) gedlist? I! = fold* ged 0 I/ (4) ged* m n = ged® (—m) n [m < 0An=n]
(2) gedlist? I! = ged® m/ n/ (5) ged* m n = ged® m (—n) [n < 0Am =m)]
(3) fold* f y (cons & 1) = fold® f y I [z =axAy =1y] | (6) gcd® m n = ged® n (m mod n) [m > 0An > 0]

v

R
o Dependency Graph: o Graph processor: decompose P into
which calls may follow one another? non-trivial Strongly Connected Components
@ Approximation @ Here:

[Guo, Hagens, Kop, Vale, MFCS '24]: ({(3)}R)
(@) ({(6)},R)
HONGIRD
(@l Ty e

9/21

(3) fold* fy (consz 1) = fold* fyl[z=2Ay=y

4

10/21

(3) fold* fy (consz 1) = fold* fyl[z=2Ay=y

4

Subterm criterion processor [Guo, Hagens, Kop, Vale, MFCS '24]
@ Detect structural decrease in argument
e Use projection v(fold*) = 3
o Get consx il
= Remove (3)
= (0, R) deleted by graph processor

10/21

(6) gcd® m n = ged® n (m mod n) [m > 0An > 0]

11/21

(6) gcd® m n = ged® n (m mod n) [m > 0An > 0]

4

Integer mapping processor [Guo, Hagens, Kop, Vale, MFCS '24]
@ Detect integer value decrease in argument
@ Use projection u(gcd’j) =2
e Get m>0An>0 | n>mmodn
and m>0An>0 E n>0

= Remove (6)
= (0,R) deleted by graph processor

11/21

(6) gcd® m n = ged® n (m mod n) [m > 0An > 0]

Integer mapping processor [Guo, Hagens, Kop, Vale, MFCS '24]
@ Detect integer value decrease in argument
@ Use projection u(gcd’j) =2
e Get m>0An>0 | n>mmodn
and m>0An>0 E n>0

= Remove (6)
= (0,R) deleted by graph processor

({(4),(5)},R) handled by integer mapping processor + graph processor

= termination of Rgcq proved!
11/21

New DP processors for LCSTRSs

Usable rules processor

Rdfoldr

drop : int — alist — alist
dfoldr : (a = b — b) — b — int — alist = b

drop n I — 1

drop n nil — nil

drop n (cons z 1) — drop (n—1) 1

dfoldr f y n nil — ¥

dfoldr f y n (cons x I) — f x (dfoldr f y n (drop n 1))

[n < 0]
[n = n]
[n > 0]

[n = n]
[n = n]

13/21

Usable rules processor

Rdfoldr

drop : int — alist — alist
dfoldr : (a = b — b) — b — int — alist = b

drop n 1 — 1 [n < 0]
drop n nil — il [n = n]
drop n (cons z 1) — drop (n—1) 1 [n > 0]
dfoldr f y n nil — [n = n]

)
dfoldr f y n (consx 1) — f x (dfoldr f y n (drop nl)) [n=n]

@ Troublesome DP problem:

({ dfoldr® fy n (cons x [) = dfoldr* f yn (dropnl) [n=n] }, Raforr)

13/21

Usable rules processor

Rdfoldr

drop : int — alist — alist
dfoldr : (a = b — b) — b — int — alist = b

drop n 1 — 1 [n < 0]
drop n nil — il [n = n]
drop n (cons z 1) — drop (n—1) 1 [n > 0]
dfoldr f y n nil — [n = n]

)
dfoldr f y n (consx 1) — f x (dfoldr f y n (drop nl)) [n=n]

@ Troublesome DP problem:
({ dfoldr® fy n (cons x [) = dfoldr* f yn (dropnl) [n=n] }, Raforr)

@ Reduction pair processor can show consx ! = drop nl
@ But cannot show dfoldr f y n (cons x 1) = f x (dfoldr f y n (drop n l))[n = n]

13/21

Usable rules processor

Rdfoldr

drop : int — alist — alist
dfoldr : (a = b — b) — b — int — alist = b

drop n 1 — 1 [n < 0]
drop n nil — il [n = n]
drop n (cons z 1) — drop (n—1) 1 [n > 0]
dfoldr f y n nil — [n = n]

)
dfoldr f y n (consx 1) — f x (dfoldr f y n (drop nl)) [n=n]

@ Troublesome DP problem:
({ dfoldr® fy n (cons x [) = dfoldr* f yn (dropnl) [n=n] }, Raforr)

Reduction pair processor can show cons 2! = drop n i
But cannot show dfoldr f y n (cons 1) 7z f x (dfoldr f y n (drop nl))[n = n]
Usable rules processor: keep only usable rules, called from DPs

Here: rules for drop
13/21

Usable rules processor

drop : int — alist — alist
dfoldr: (a— b —b) - b — int — alist > b

drop n ! — 1 [n <0]

drop n nil — il [n = n]

drop n (cons z 1) — drop (n—1) 1 [n > 0]
@ Troublesome DP problem:

({ dfoldr® fyn (cons z 1) = dfoldr* fyn (dropnl)[n=n] }, Rdsoldr)

Reduction pair processor can show cons z [> drop nl

But cannot show dfoldr f y n (cons z 1) zZ f x (dfoldr f y n (drop nl))[n = n]
Usable rules processor: keep only usable rules, called from DPs

Here: rules for drop

13/21

Reduction pair processor with usable rules wrt an argument filtering

Rdfoldi

drop n l — 1 [n < 0]
drop n nil — il [n = n]
drop n (cons z 1) — drop (n—1) 1 [n > 0]
dfoldl f y n nil -y n = n)
dfoldl f y n (cons z 1) — dfoldl f (f y) n (drop nl) [n=n]

14/21

Reduction pair processor with usable rules wrt an argument filtering

Rdfoldi

drop n l — 1 [n < 0]
drop n nil — il [n = n]
drop n (cons z 1) — drop (n—1) 1 [n > 0]
dfoldl f y n nil -y n = n)
dfoldl f y n (cons z 1) — dfoldl f (f y) n (drop nl) [n=n]

@ Troublesome DP problem:

({ dfoldl® fyn (cons x)= dfoldl’ f (fyz)n (dropnl)[n=n] }, Rdold)

14/21

Reduction pair processor with usable rules wrt an argument filtering

Rdfoldi

drop n l — 1 [n < 0]
drop n nil — il [n = n]
drop n (cons z 1) — drop (n—1) 1 [n > 0]
dfoldl f y n nil -y n = n)
dfoldl f y n (cons z 1) — dfoldl f (f y) n (drop nl) [n=n]

@ Troublesome DP problem:

({ dfoldl® fyn (cons x 1) = dfoldl’ f (fyz)n (dropnl)[n=n] }, Rdeld)

@ All rules are usablel

14/21

Reduction pair processor with usable rules wrt an argument filtering

Rdfoldi

drop n l — 1 [n < 0]
drop n nil — il [n = n]
drop n (cons z 1) — drop (n—1) 1 [n > 0]
dfoldl f y n nil -y n = n)
dfoldl f y n (cons z 1) — dfoldl f (f y) n (drop nl) [n=n]

@ Troublesome DP problem:

({ dfoldl® fyn (cons x 1) = dfoldl’ f (fyz)n (dropnl)[n=n] }, Rdeld)

@ All rules are usablel

@ Reduction pair processor with usable rules wrt argument filtering:

temporarily disregard arguments, calculate usable rules, use reduction pair (HORPO, ...)

14/21

Reduction pair processor with usable rules wrt an argument filtering

Rdfoldi

drop n l — 1 [n < 0]
drop n nil — il [n = n]
drop n (cons z 1) — drop (n—1) 1 [n > 0]
dfoldl f y n nil -y n = n)
dfoldl f y n (cons z 1) — dfoldl f (f y) n (drop nl) [n=n]

@ Troublesome DP problem:

({ dfoldl® fyn (cons x 1) = dfoldl’ f (fyz)n (dropnl)[n=n] }, Rdeld)

@ All rules are usable!
@ Reduction pair processor with usable rules wrt argument filtering:
temporarily disregard arguments, calculate usable rules, use reduction pair (HORPO, ...)

o regard(dfoldl¥) = {4} = use first-order RPO!

14/21

Reduction pair processor with usable rules wrt an argument filtering

Rdfoldi

drop n l — 1 [n < 0]
drop n nil — il [n = n]
drop n (cons z 1) — drop (n—1) 1 [n > 0]
dfoldl f y n nil -y n = n)
dfoldl f y n (cons z 1) — dfoldl f (f y) n (drop nl) [n=n]

@ Troublesome DP problem:

({ dfoldl* (cons z 1) = dfoldl* (dropnl) [n=n] }, Rdfold)

@ All rules are usable!
@ Reduction pair processor with usable rules wrt argument filtering:
temporarily disregard arguments, calculate usable rules, use reduction pair (HORPO, ...)

o regard(dfoldl¥) = {4} = use first-order RPO!

14/21

Reduction pair processor with usable rules wrt an argument filtering

Rdfoldi

drop n [— 1 [n < 0]

drop n nil — il [n = n]

drop n (cons z 1) — drop (n—1) 1 [n > 0]
@ Troublesome DP problem:

({ dfoldl* (cons z 1) = dfoldl* (dropnl) [n=n] }, Rdold)

@ All rules are usablel

Reduction pair processor with usable rules wrt argument filtering:

temporarily disregard arguments, calculate usable rules, use reduction pair (HORPO, ...)

regard(dfoldl’) = {4} = use first-order RPO!

14/21

Chaining processor

(S)DPs from imperative program

def fact(x):
z =1
i=1
while i <= x:
z =z % i
i=1i+1

HOHF H H H H

fact
ul
u2
u3
u4
ub

15/21

Chaining processor

(S)DPs from imperative program

def fact(x): factt z = ufzil [z = x]
z = 1 # fact uwzz = warzl [z=xzAz=2]
i=1 # ul wirzi = ufzzi [i<zAz=2z]
while i <= x: # u2 usfz2zi = wlz(zxi)i [z=zAz=2Ai=1
z=zx1i #u3 uwfzzi = wWrz(@+l) r=zAz=2Ai=d)
i=1+1 # u4 wrrzi = usfzz (i <z)Az2=72]
ub)

o Automated translations = DPs with many small steps
@ Can be hard to analysel!

15/21

Chaining processor

(S)DPs from imperative program

def fact(x): factt z = ufzil [z = x]
z = 1 # fact uwzz = warzl [z=xzAz=2]
i=1 # ul wirzi = ufzzi [i<zAz=2z]
while i <= x: # u2 usfz2zi = wlz(zxi)i [z=zAz=2Ai=1
z=zx1i #u3 uwfzzi = wWrz(@+l) r=zAz=2Ai=d)
i=1+1 # u4 wrrzi = usfzz (i <z)Az2=72]
ub)

o Automated translations = DPs with many small steps
@ Can be hard to analysel!

e Chaining processor: remove intermediate symbols u*

15/21

Chaining processor

(S)DPs from imperative program

def fact(x): factf z =
z =1 # fact uf z 11 [z =]
i=1 # ul wrzi = wrzi [i<zAz=2z]
while i <= x: # u2 usfz2zi = wlz(zxi)i [z=xAz=2Ai=1
z=zx1i #u3 ufzzi = wWarz@+l) r=sAz=2Ai=d)
i=1+1 # u4 wrrzi = usfzz [<z)Az=2]
ub

o Automated translations = DPs with many small steps
@ Can be hard to analysel!

e Chaining processor: remove intermediate symbols u?, us"

15/21

Chaining processor

(S)DPs from imperative program

def fact(x): factf z =
z =1 # fact uf z 11 [z =]
i=1 # ul wfzzi =
while i <= x: # u2 utfz(z*xi)i [i<zAz=xzAz=2Ai=i
z=2zx%1i # u3 uzzi = warzz@+l) z=zAz=2Ai=1]
i=1+1 # ud wrzzi = usfazz (i <z)Az=72]
ub

o Automated translations = DPs with many small steps
@ Can be hard to analysel!

e Chaining processor: remove intermediate symbols u1?, us?, us

15/21

Chaining processor

(S)DPs from imperative program

def fact(x): factt z =
z =1 # fact uf z 11 [z =]
i=1 # ul utzzi =
while i <= x: # u2
z=2zx*1i # u3 wrrz(+l) i<TAz=xA2=2A0i=]
i=1+1 # u4 wizzi = usfzxz [<z)Az=2]
ub

o Automated translations = DPs with many small steps
@ Can be hard to analysel!

e Chaining processor: remove intermediate symbols u1?, us?, us

15/21

Chaining processor

(S)DPs from imperative program

def fact(x):
Zi ! # fact factfz = wliz11 [z =]
171 . #ul wWirzi = wrz@i+l) [<zAz=2]
while i <= x: # u2 § . 4 - .
. w*rzi = us"fxz [<z)Az=72]
z=2zx%1 # u3
i=1+1 # u4
ub |

o Automated translations = DPs with many small steps
@ Can be hard to analysel!

e Chaining processor: remove intermediate symbols u1?, us?, us

15/21

Chaining processor

(S)DPs from imperative program

def fact(x):
Zi 1 @ ffees factt z = wiz11 [z = z]
171 . #ul wWirzi = wrz@i+l) [<rAz=2]
while i <= x: # u2 § . § - .
. w*rzi = us"fxz [<z)Az=72]
z=2z%1 # u3
i=1i+1 # u4
ub |

o Automated translations = DPs with many small steps
@ Can be hard to analysel!

e Chaining processor: remove intermediate symbols u1?, us?, us

@ Integer mapping processor + graph processor prove termination

15/21

Compositional analysis from Universal Computability

@ Goal: compositional open-world program analysis

16/21

Compositional analysis from Universal Computability

@ Goal: compositional open-world program analysis

e For termination analysis: Universal Computability [Guo, Hagens, Kop, Vale, MFCS '24]

16/21

Compositional analysis from Universal Computability

@ Goal: compositional open-world program analysis
e For termination analysis: Universal Computability [Guo, Hagens, Kop, Vale, MFCS '24]

@ Analyse LCSTRS for use in context of larger program

16/21

Compositional analysis from Universal Computability

@ Goal: compositional open-world program analysis
e For termination analysis: Universal Computability [Guo, Hagens, Kop, Vale, MFCS '24]
@ Analyse LCSTRS for use in context of larger program

@ Usable rules + reduction pair processor available for innermost (and cbv) rewriting!

16/21

Implementation

@ Implementation in open-source tool Cora: https://github.com/hezzel/cora/
@ HORPO as reduction pair
@ Z3 as SMT solver

17/21

https://github.com/hezzel/cora/

Experiments (1/3)

Experiments using 60 seconds timeout

18/21

Experiments (1/3)

Experiments using 60 seconds timeout

275 inputs: integer TRSs + \-free HO-TRSs from TPDB + own benchmarks

18/21

Experiments (1/3)

Experiments using 60 seconds timeout
275 inputs: integer TRSs + \-free HO-TRSs from TPDB + own benchmarks

Cora (innermost/cbv) v Cora (full) [Guo, Hagens, Kop, Vale, MFCS '24]

Termination Universal Computability
Full Innermost Call-by-value | Full Innermost Call-by-value
Total yes | 171 179 182|155 179 182

18/21

Experiments (2/3)

117 integer TRSs: Cora v AProVE [Giesl et al, JAR '17] [Fuhs et al, RTA '09]

‘ Cora innermost Cora call-by-value AProVE innermost
Total yes | 72 73 102

19/21

Experiments (2/3)

117 integer TRSs: Cora v AProVE [Giesl et al, JAR '17] [Fuhs et al, RTA '09]

‘ Cora innermost Cora call-by-value AProVE innermost
Total yes | 72 73 102

@ AProVE has strong reduction pair processor with polynomial interpretations and usable rules

@ AProVE can handle rules f(z) — g(x > 0,z), g(t,x) = 1, g(f,z) = r2 well

19/21

Experiments (3/3)

140 \-free HO-TRSs: Cora v WANDA [Kop, FSCD "20]

‘ Cora innermost / call-by-value WANDA full termination
Total yes ‘ 79 105

20/21

Experiments (3/3)

140 \-free HO-TRSs: Cora v WANDA [Kop, FSCD "20]

‘ Cora innermost / call-by-value WANDA full termination
Total yes ‘ 79 105

e WANDA: Polynomial interpretations, dynamic DPs, delegation to first-order termination tool,

20/21

Conclusion

@ Transformation for analysis of LCSTRSs with call-by-value via innermost strategy
@ Three new processors: usable rules, reduction pair with temporary argument filtering, chaining

@ Improved open-world termination analysis

21/21

https://github.com/hezzel/cora/
https://www.cs.ru.nl/~cynthiakop/experiments/fscd25/

Conclusion

Transformation for analysis of LCSTRSs with call-by-value via innermost strategy

@ Three new processors: usable rules, reduction pair with temporary argument filtering, chaining

Improved open-world termination analysis

Implementation: https://github.com/hezzel/cora/

Evaluation page: https://www.cs.ru.nl/~cynthiakop/experiments/fscd25/

21/21

https://github.com/hezzel/cora/
https://www.cs.ru.nl/~cynthiakop/experiments/fscd25/

Conclusion

Transformation for analysis of LCSTRSs with call-by-value via innermost strategy

Three new processors: usable rules, reduction pair with temporary argument filtering, chaining

Improved open-world termination analysis

Implementation: https://github.com/hezzel/cora/

Evaluation page: https://www.cs.ru.nl/~cynthiakop/experiments/fscd25/

FSCD 2025 paper:

An Innermost DP Framework for Constrained
Higher-Order Rewriting

Carsten Fuhs &

Birkbeck, University of London, UK

Liye Guo &2
Radboud University, Nijmegen, The Netherlands

Cynthia Kop &
Radboud University, Nijmegen, The Netherlands

21/21

https://github.com/hezzel/cora/
https://www.cs.ru.nl/~cynthiakop/experiments/fscd25/

Conclusion

Transformation for analysis of LCSTRSs with call-by-value via innermost strategy

Three new processors: usable rules, reduction pair with temporary argument filtering, chaining

Improved open-world termination analysis

Implementation: https://github.com/hezzel/cora/

Evaluation page: https://www.cs.ru.nl/~cynthiakop/experiments/fscd25/

FSCD 2025 paper:

An Innermost DP Framework for Constrained
Higher-Order Rewriting

Carsten Fuhs &

Birkbeck, University of London, UK

Liye Guo &2
Radboud University, Nijmegen, The Netherlands

Cynthia Kop &
Radboud University, Nijmegen, The Netherlands

Thanks a lot for your attention!
21/21

https://github.com/hezzel/cora/
https://www.cs.ru.nl/~cynthiakop/experiments/fscd25/

